| A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
分析 构造函数F(x)=xf(x),求导数,判断单调性求解.
解答 解:令函数F(x)=xf(x),则F′(x)=f(x)+xf′(x)
∵f(x)+xf′(x)<0,∴F(x)=xf(x),x∈(-∞,0)单调递减,
∵y=f(x)是定义在R上的奇函数,
∴F(x)=xf(x),在(-∞,0)上为减函数,
可知F(x)=xf(x),(0,+∞)上为增函数
∵a=3•f(3),b=-2f(-2),c=f(1),
∴a=F(-3),b=F(-2),c=F(-1)
∴F(-3)>F(-2)>F(-1),
即a>b>c.
故选:A.
点评 本题考查复合函数的求导,导数在单调性中的应用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,2) | B. | (-∞,-2) | C. | (-2,+∞) | D. | (-∞,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{4}$)>f($\frac{π}{6}$) | C. | $\sqrt{2}$f($\frac{π}{4}$)<2f($\frac{π}{6}$) | D. | f($\frac{π}{4}$)>$\frac{1}{2}$f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (2,$\root{3}{12}$) | C. | (1,$\root{3}{4}$) | D. | (2,$\root{3}{10}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com