精英家教网 > 高中数学 > 题目详情
1.已知圆内接四边形ABCD中,AB=BC=3,CD=4,DA=8,则该圆的半径为3.

分析 连接AC,在△ABC、△ACD中分别用由余弦定理求AC2,两式右边相等消去AC2,式子两角是互补的,得出角的正弦值,可求出sin∠ADC和AC,利用正弦定理得直径,除以2得半径.

解答 解:连接AC,在△ABC中由余弦定理,得:
AC2=AB2+BC2-2AB•BCcos∠ABC=32+32-2×3×3cos∠ABC=18-18cos∠ABC,
在△ACD中由余弦定理,得AC2=AD2+DC2-2AD•DCcos∠ADC
=42+82-2×4×8cos∠ADC=80-64cos∠ADC,
从而得18-18cos∠ABC=80-64cos∠ADC,
又∠ADC=π-∠ABC,故cos∠ADC=$\frac{31}{41}$
sin∠ADC=$\frac{2\sqrt{205}}{41}$,AC=$\frac{\sqrt{180}}{\sqrt{41}}$
所以2R=$\frac{\frac{\sqrt{180}}{\sqrt{41}}}{\frac{2\sqrt{205}}{41}}$=3,
故答案为:3.

点评 本题两次用到余弦定理,衔接点有两处,一是有一条公共边,二是式子中两个角互补,圆内接四边形的对角补,要从图中读出,这点很重要;正弦定理记忆的时候要全面,它的比值是三角形外接圆的直径,知道这一点,问题迎刃而解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,圆C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+\sqrt{3}cos{φ}_{1}}\\{y=\sqrt{3}sin{φ}_{1}}\end{array}\right.$(φ1是参数),圆C2的参数方程为$\left\{\begin{array}{l}{x=cos{φ}_{2}}\\{y=1+sin{φ}_{2}}\end{array}\right.$(φ2是参数),以O为极点,x轴正半轴为极轴建立极坐标系.
(I)求圆C1,圆C2的极坐标方程;
(Ⅱ)射线θ=α( 0≤α<2π)同时与圆C1交于O,M两点,与圆C2交于O,N两点,求|OM|+|ON|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)=x3+bx2+cx+d,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根;当0<k<4时,f(x)-k=0有三个相异实根,现给出下列命题:
①f(x)-4=0和f′(x)=0有一个相同的实根    
②f(x)=0和f′(x)=0有一个相同的实根
③f(x)+3=0的任一实根大于f(x)-1=0的任一实根 
④f(x)+5=0的任一实根小于f(x)-2=0的任一实根.
其中错误的命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3-3x
(1)求函数f(x)的单调区间,并求函数f(x)的极值;
(2)若方程x3-3x-a+1=0有三个相异的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x3+bx2+cx+d的图象如图,则函数y=f′(x)的单调减区间为(  )
A.[0,3)B.[-2,3]C.(-∞,$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=||x-2|-2|,若关于x的方程f(x)=m(m∈R)恰有四个互不相等的实根x1,x2,x3,x4,且x1<x2<x3<x4,则$\frac{{{x_1}{x_2}}}{{{x_3}{x_4}}}$的取值范围是(  )
A.(-1,0)B.(-$\frac{1}{2}$,0)C.(-2,0)D.(-$\frac{1}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的方程是y=6,圆C的参数方程是$\left\{\begin{array}{l}{x=cosφ}\\{y=1+sinφ}\end{array}\right.$(φ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)分别求直线l与圆C的极坐标方程;
(Ⅱ)射线OM:θ=α(0<α<$\frac{π}{2}$)与圆C的交点为O、P两点,与直线l的交于点M.射线ON:θ=α+$\frac{π}{2}$与圆C交于O,Q两点,与直线l交于点N,求$\frac{|OP|}{|OM|}$•$\frac{|OQ|}{|ON|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=3f(3),b=-2f(-2),c=f(1),则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线$\left\{\begin{array}{l}{x=3+tcos70°}\\{y=-tsin70}\end{array}\right.$(t为参数)的倾斜角为(  )
A.20°B.70°C.110°D.160°

查看答案和解析>>

同步练习册答案