精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x3+bx2+cx+d的图象如图,则函数y=f′(x)的单调减区间为(  )
A.[0,3)B.[-2,3]C.(-∞,$\frac{1}{2}$)D.(-∞,-2)

分析 先求出b、c的值,再确定函数y=f′(x)的单调减区间.

解答 解:∵f(x)=x3+bx2+cx+d,
∴f'(x)=3x2+2bx+c
由函数f(x)的图象知,f'(-2)=0,f'(3)=0
∴b=-$\frac{3}{2}$,c=-18,
∴f′(x)=3x2-3x-18=3(x+2)(x-3)
令f′(x)<0,则-2<x<3,
∴函数y=f′(x)的单调递减区间是[-2,3]
故选B.

点评 本题主要考查函数的单调性,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,PA是圆的切线,A是切点,M是PA的中点,过点M作圆的割线交圆于点C,B,连接PB,PC分别交圆于点E,F,EF与BC的交点为N.
求证:
(Ⅰ)EF∥PA;
(Ⅱ)MA•NE=MC•NB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,△ABC内接于⊙O,AD是⊙O的切线,切点为A,∠DAC的平分线交⊙O于E,且满足AB⊥AE.
(I)证明:∠BAC=∠BCA;
(Ⅱ)设⊙O的半径为1,AC=$\sqrt{3}$,CE的延长线交AD于点F,求△AFC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{1}{3}$x3+x2+ax在x∈R上单调递增,则实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|ax+1|,a∈R.
(Ⅰ)若?x∈R,f(x)+f(x-2)≥1恒成立,求实数a的取值范围;
(Ⅱ)若f($\frac{a-1}{a}$)+f($\frac{b-1}{a}$)+f($\frac{c-1}{a}$)=4,求f($\frac{{{a^2}-1}}{a}$)+f($\frac{{{b^2}-1}}{a}$)+f($\frac{{{c^2}-1}}{a}$)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆内接四边形ABCD中,AB=BC=3,CD=4,DA=8,则该圆的半径为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为$\left\{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}\right.$(t为参数).
(1)求圆C的直角坐标方程(化为标准方程)和直线l的极坐标方程;
(2)若直线l与圆C只有一个公共点,且a<1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的图象如图所示,则导函数y=f′(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.参数方程$\left\{{\begin{array}{l}{x=4t+1}\\{y=-2t-5}\end{array}}\right.$(t为参数)化为普通方程为x+2y+9=0.

查看答案和解析>>

同步练习册答案