精英家教网 > 高中数学 > 题目详情
6.参数方程$\left\{{\begin{array}{l}{x=4t+1}\\{y=-2t-5}\end{array}}\right.$(t为参数)化为普通方程为x+2y+9=0.

分析 由y=-2t-5,可得2y=-4t-10,与x=4t+1相加即可得出普通方程.

解答 解:由y=-2t-5,可得2y=-4t-10,与x=4t+1相加可得:x+2y=-9,即x+2y+9=0.
故答案为:x+2y+9=0.

点评 本题考查了参数方程化为普通方程的方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x3+bx2+cx+d的图象如图,则函数y=f′(x)的单调减区间为(  )
A.[0,3)B.[-2,3]C.(-∞,$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,两个以O为圆心的同心圆,AB切大圆于B,AC切小圆于C,交大圆于D,E,AB=12,AO=15,AD=8,求两圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=$\frac{lnx}{x}$,e<a<b,则f(a),f(b)的大小关系为f(a)>f(b).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tanα=2,求
(1)$\frac{2sin(α-π)3cos(-α)}{4sin(\frac{π}{2}+α)-9cos(α-\frac{3π}{2})}$;
(2)4sin2α-3sinαcosα-5cos2α;
(3)$\frac{1+sin2α}{1+sin2α+cos2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线$\left\{\begin{array}{l}{x=3+tcos70°}\\{y=-tsin70}\end{array}\right.$(t为参数)的倾斜角为(  )
A.20°B.70°C.110°D.160°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=lnx+$\frac{m}{x}$,m∈R,若对任意x2>x1>0,f(x2)-f(x1)<x2-x1恒成立,则实数m的取值范围是[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设n为正整数,经计算得:f(2)>$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,观察上述结果,由此可推出第n个式子为f(2n)>$\frac{n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{e}$1,$\overrightarrow{e}$2为平面上的单位向量,$\overrightarrow{e}$1与$\overrightarrow{e}$2的起点均为坐标原点O,$\overrightarrow{e}$1与$\overrightarrow{e}$2夹角为$\frac{π}{3}$.平面区域D由所有满足$\overrightarrow{OP}$=λ$\overrightarrow{e}$1+μ$\overrightarrow{e}$2的点P组成,其中$\left\{{\begin{array}{l}{λ+μ≤1}\\{0≤λ}\\{0≤μ}\end{array}}\right.$,那么平面区域D的面积为(  )
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案