精英家教网 > 高中数学 > 题目详情
11.直线$\left\{\begin{array}{l}{x=3+tcos70°}\\{y=-tsin70}\end{array}\right.$(t为参数)的倾斜角为(  )
A.20°B.70°C.110°D.160°

分析 设直线的倾斜角为α,由直线$\left\{\begin{array}{l}{x=3+tcos70°}\\{y=-tsin70}\end{array}\right.$(t为参数),可得tanα=-tan70°,利用诱导公式即可得出.

解答 解:设直线的倾斜角为α,由直线$\left\{\begin{array}{l}{x=3+tcos70°}\\{y=-tsin70}\end{array}\right.$(t为参数),可得tanα=-tan70°=tan110°,
可得倾斜角α=110°
故选:C.

点评 本题考查了参数方程的应用、直线的倾斜角与向斜率的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知圆内接四边形ABCD中,AB=BC=3,CD=4,DA=8,则该圆的半径为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f(x)是定义在R上的偶函数,对x∈R都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0恰有5个不同的实数根,则a的取值范围是(  )
A.(1,2)B.(2,$\root{3}{12}$)C.(1,$\root{3}{4}$)D.(2,$\root{3}{10}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.两圆相交于点A,B,P是BA延长线上一点,PCD,PEF分别是两圆的割线,求证:C,D,E,F四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.参数方程$\left\{{\begin{array}{l}{x=4t+1}\\{y=-2t-5}\end{array}}\right.$(t为参数)化为普通方程为x+2y+9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线C1:$\left\{\begin{array}{l}x=1+\frac{4}{5}t\\ y=1-\frac{3}{5}t\end{array}\right.$(t为参数),曲线C2:ρ=4cosθ
(1)将C1与C2化成普通方程与直角坐标方程;
(2)求直线C1被曲线C2所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\frac{1}{3}$x3+x2-3x-a在[-1,2]上有零点,则实数a的取值范围是-$\frac{5}{3}$≤a≤$\frac{11}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合A={(x,y)|x2+$\frac{{y}^{2}}{4}$=1},B={(x,y)|y=2x},则A∩B的子集的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,由O⊙的$\widehat{AB}$的中点C引弦CD、CE,分别与AB相交于F、G.求证:DG•EF=FD•GE+DE•FG.

查看答案和解析>>

同步练习册答案