精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{1}{3}$x3+x2-3x-a在[-1,2]上有零点,则实数a的取值范围是-$\frac{5}{3}$≤a≤$\frac{11}{3}$.

分析 利用导数判断函数f(x)的单调性,求出f(x)在[-1,2]上的最大、最小值,利用函数零点的定义,即可求出a的取值范围.

解答 解:∵函数f(x)=$\frac{1}{3}$x3+x2-3x-a,
∴f′(x)=x2+2x-3,
令f′(x)=0,解得x=-3或x=1;
当x∈(-1,1)时,f′(x)<0,f(x)是单调减函数,
当x∈(1,2)时,f′(x)>0,f(x)是单调增函数,
∴f(x)在x=1时取得极小值f(1)=-$\frac{5}{3}$-a;
又f(-1)=$\frac{11}{3}$-a,f(2)=$\frac{2}{3}$-a,
∴f(x)在[-1,2]上的最大值为$\frac{11}{3}$-a,最小值为-$\frac{5}{3}$-a;
又函数f(x)在[-1,2]上有零点,则$\left\{\begin{array}{l}{\frac{11}{3}-a≥0}\\{-\frac{5}{3}-a≤0}\end{array}\right.$,
解得-$\frac{5}{3}$≤a≤$\frac{11}{3}$.
故答案为:-$\frac{5}{3}$≤a≤$\frac{11}{3}$.

点评 本题考查了利用导数判断函数的单调性与求函数在某一闭区间上的最值问题,也考查了函数零点的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的方程是y=6,圆C的参数方程是$\left\{\begin{array}{l}{x=cosφ}\\{y=1+sinφ}\end{array}\right.$(φ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)分别求直线l与圆C的极坐标方程;
(Ⅱ)射线OM:θ=α(0<α<$\frac{π}{2}$)与圆C的交点为O、P两点,与直线l的交于点M.射线ON:θ=α+$\frac{π}{2}$与圆C交于O,Q两点,与直线l交于点N,求$\frac{|OP|}{|OM|}$•$\frac{|OQ|}{|ON|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=$\frac{lnx}{x}$,e<a<b,则f(a),f(b)的大小关系为f(a)>f(b).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线$\left\{\begin{array}{l}{x=3+tcos70°}\\{y=-tsin70}\end{array}\right.$(t为参数)的倾斜角为(  )
A.20°B.70°C.110°D.160°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=lnx+$\frac{m}{x}$,m∈R,若对任意x2>x1>0,f(x2)-f(x1)<x2-x1恒成立,则实数m的取值范围是[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若方程$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1有增根,则增根是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设n为正整数,经计算得:f(2)>$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,观察上述结果,由此可推出第n个式子为f(2n)>$\frac{n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:
sin230°+sin290°+sin2150°=$\frac{3}{2}$
sin210°+sin270°+sin2130°=$\frac{3}{2}$
sin25°+sin265°+sin2125°=$\frac{3}{2}$
通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系中,以原点为极点,x轴的正半轴为极轴,以相同的长度单位建立极坐标系,己知直线l的极坐标方程为ρcosθ-ρsinθ=2,曲线C的极坐标方程为ρsin2θ=2pcosθ(p>0).
(1)设t为参数,若x=-2+$\frac{\sqrt{2}}{2}$t,求直线l的参数方程;
(2)已知直线l与曲线C交于P、Q,设M(-2,-4),且|PQ|2=|MP|•|MQ|,求实数p的值.

查看答案和解析>>

同步练习册答案