分析 问题转化为函数g(x)=f(x)-x=lnx+$\frac{m}{x}$-x在(0,+∞)递减,即m≥x-x2在(0,+∞)恒成立,求出m的范围即可.
解答 解:若对任意x2>x1>0,f(x2)-f(x1)<x2-x1恒成立,
即若对任意x2>x1>0,f(x2)-x2<f(x1)-x1恒成立,
即函数g(x)=f(x)-x=lnx+$\frac{m}{x}$-x在(0,+∞)递减,
g′(x)=$\frac{{-x}^{2}+x-m}{{x}^{2}}$≤0在(0,+∞)恒成立,
即m≥x-x2在(0,+∞)恒成立,
而x-x2=-${(x-\frac{1}{2})}^{2}$+$\frac{1}{4}$≤$\frac{1}{4}$,
∴m≥$\frac{1}{4}$,
故答案为:[$\frac{1}{4}$,+∞).
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{{e}^{2}-1}{2e-1}$,+∞) | B. | (-∞,$\frac{{e}^{2}-1}{2e-1}$) | C. | (0,$\frac{{e}^{2}-1}{2e-1}$) | D. | {$\frac{{e}^{2}-1}{2e-1}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com