精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=loga$\frac{1-x}{x+1}$(a>0,a≠1).
(I)求函数的定义域;
(Ⅱ)判断函数的奇偶性,并说明理由;
(Ⅲ)解不等式f(x)>0.

分析 (Ⅰ)解不等式$\frac{1-x}{x+1}>0$即可得出该函数的定义域;
(Ⅱ)可先判断定义域关于原点对称,然后求f(-x),便可得到f(-x)=-f(x),从而得出f(x)为奇函数;
(Ⅲ)讨论a:0<a<1,和a>1,根据对数函数的单调性,在每种情况下会得到一个关于x的不等式,解不等式即可得出x的范围,即得出原不等式的解集.

解答 解:(Ⅰ)解$\frac{1-x}{x+1}>0$,得-1<x<1;
∴函数的定义域为(-1,1);
(Ⅱ)∵函数的定义域关于原点对称;
且$f(-x)=lo{g}_{a}\frac{1+x}{1-x}=lo{g}_{a}(\frac{1-x}{1+x})^{-1}=-lo{g}_{a}\frac{1-x}{1+x}=-f(x)$;
∴f(x)为奇函数;
(Ⅲ)∵f(x)>0,①当0<a<1时,$0<\frac{1-x}{1+x}<1$;
解得0<x<1;
②当a>1时,$\frac{1-x}{1+x}>1$;
∴-1<x<0.

点评 考查函数定义域的概念及求法,对数的真数大于0,以及函数奇偶性的定义,分式不等式的解法,对数函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,两个以O为圆心的同心圆,AB切大圆于B,AC切小圆于C,交大圆于D,E,AB=12,AO=15,AD=8,求两圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=lnx+$\frac{m}{x}$,m∈R,若对任意x2>x1>0,f(x2)-f(x1)<x2-x1恒成立,则实数m的取值范围是[$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设n为正整数,经计算得:f(2)>$\frac{3}{2}$,f(4)>2,f(8)>$\frac{5}{2}$,f(16)>3,f(32)>$\frac{7}{2}$,观察上述结果,由此可推出第n个式子为f(2n)>$\frac{n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知sin(α-$\frac{π}{3}$)=$\frac{15}{17}$,α∈($\frac{π}{2}$,$\frac{5}{6}$π),则sinα的值为(  )
A.$\frac{8}{17}$B.$\frac{15\sqrt{3}+8}{34}$C.$\frac{15-8\sqrt{3}}{34}$D.$\frac{15+8\sqrt{3}}{34}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:
sin230°+sin290°+sin2150°=$\frac{3}{2}$
sin210°+sin270°+sin2130°=$\frac{3}{2}$
sin25°+sin265°+sin2125°=$\frac{3}{2}$
通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.
(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;
(2)若二面角D-AP-C的正弦值为$\frac{\sqrt{6}}{3}$,求PF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{e}$1,$\overrightarrow{e}$2为平面上的单位向量,$\overrightarrow{e}$1与$\overrightarrow{e}$2的起点均为坐标原点O,$\overrightarrow{e}$1与$\overrightarrow{e}$2夹角为$\frac{π}{3}$.平面区域D由所有满足$\overrightarrow{OP}$=λ$\overrightarrow{e}$1+μ$\overrightarrow{e}$2的点P组成,其中$\left\{{\begin{array}{l}{λ+μ≤1}\\{0≤λ}\\{0≤μ}\end{array}}\right.$,那么平面区域D的面积为(  )
A.$\frac{1}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点P(-1+$\sqrt{2}$cosα,$\sqrt{2}$sinα)(其中α∈[0,2π)),点P的轨迹记为曲线C1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点Q在曲线C2:ρ=$\frac{1}{{\sqrt{2}cos(θ+\frac{π}{4})}}$上.
(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)当ρ≥0,0≤θ<2π时,求曲线C1与曲线C2的公共点的极坐标.

查看答案和解析>>

同步练习册答案