精英家教网 > 高中数学 > 题目详情
7.在如图所示的几何体中,四边形ABCD为矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,点P在棱DF上.
(1)若P是DF的中点,求异面直线BE与CP所成角的余弦值;
(2)若二面角D-AP-C的正弦值为$\frac{\sqrt{6}}{3}$,求PF的长度.

分析 (1)以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,利用向量法能求出异面直线BE与CP所成角的余弦值.
(2)求出平面APC的法向量和平面ADF的法向量,利用向量法能求出PF的长度.

解答 解:(1)∵BAF=90°,∴AF⊥AB,
又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,
∴AF⊥平面ABCD,又四边形ABCD为矩形,
∴以A为原点,AB为x轴,AD为y轴,AF为z轴,建立空间直角坐标系,
∵AD=2,AB=AF=2EF=2,P是DF的中点,
∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),
$\overrightarrow{BE}$=(-1,0,2),$\overrightarrow{CP}$=(-2,-1,1),
设异面直线BE与CP所成角的平面角为θ,
则cosθ=$\frac{|\overrightarrow{BE}•\overrightarrow{CP}|}{|\overrightarrow{BE}|•|\overrightarrow{CP}|}$=$\frac{4}{\sqrt{5}•\sqrt{6}}$=$\frac{2\sqrt{30}}{15}$,
∴异面直线BE与CP所成角的余弦值为$\frac{2\sqrt{30}}{15}$.
(2)A(0,0,0),C(2,2,0),F(0,0,2),D(0,2,0),
设P(a,b,c),$\overrightarrow{FP}=λ\overrightarrow{FD}$,0≤λ≤1,即(a,b,c-2)=λ(0,2,-2),
解得a=0,b=2λ,c=2-2λ,∴P(0,2λ,2-2λ),
$\overrightarrow{AP}$=(0,2λ,2-2λ),$\overrightarrow{AC}$=(2,2,0),
设平面APC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AP}=2λy+(2-2λ)z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2x+2y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,-1,$\frac{2λ}{2-2λ}$),
平面ADF的法向量$\overrightarrow{m}$=(1,0,0),
∵二面角D-AP-C的正弦值为$\frac{\sqrt{6}}{3}$,
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2+(\frac{2λ}{2-2λ})^{2}}}$=$\sqrt{1-(\frac{\sqrt{6}}{3})^{2}}$,
解得$λ=\frac{1}{4}$,∴P(0,$\frac{1}{2}$,$\frac{3}{2}$),
∴PF的长度|PF|=$\sqrt{(0-0)^{2}+(\frac{1}{2}-0)^{2}+(\frac{3}{2}-2)^{2}}$=$\frac{\sqrt{2}}{2}$.

点评 本题考查异面直线所成角的求法,考查线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\frac{{e}^{x}}{|x|}$,关于x的方程f2(x)-2af(x)+a-1=0(a∈R)有3个相异的实数根,则a的取值范围是(  )
A.($\frac{{e}^{2}-1}{2e-1}$,+∞)B.(-∞,$\frac{{e}^{2}-1}{2e-1}$)C.(0,$\frac{{e}^{2}-1}{2e-1}$)D.{$\frac{{e}^{2}-1}{2e-1}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{{2}^{x}-1}$+a是奇函数.
(1)求a的值和函数f(x)的定义域;
(2)用单调性的定义证明:函数f(x)在(0,+∞)上是减函数;
(3)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=loga$\frac{1-x}{x+1}$(a>0,a≠1).
(I)求函数的定义域;
(Ⅱ)判断函数的奇偶性,并说明理由;
(Ⅲ)解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax3+x2-ax(a∈R且a≠0).
(1)若函数f(x)在(-∞,-1)和($\frac{1}{3},-∞$)上是增函数,在(-1,$\frac{1}{3}$)上是减函数,求a的值;
(2)讨论函数g(x)=$\frac{f(x)}{x}-\frac{3}{a}$lnx的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=x2-ax+lnx,若存在唯一一个整数x0使f(x0)<0成立,则a最大值为(  )
A.ln2B.2C.2+$\frac{1}{2}$ln2D.2+ln2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,AH平分∠BAC,交△ABC的外接圆O于点F,过点F作DE∥BC.分别交AB,AC的延长线于D,E两点.
(1)求证:DE是⊙O的切线;
(2)若FH=6,HA=2,求BF的长;
(3)若∠BAC=120°,在(2)的条件下.求$\widehat{BFC}$长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3-6ax2,其中a≥0.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin2ωx+$\sqrt{3}$sinωx•cosωx-1(ω>0)的周期为π.
(1)当x∈[0,$\frac{π}{2}$]时,求f(x)的取值范围;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案