| A. | ($\frac{{e}^{2}-1}{2e-1}$,+∞) | B. | (-∞,$\frac{{e}^{2}-1}{2e-1}$) | C. | (0,$\frac{{e}^{2}-1}{2e-1}$) | D. | {$\frac{{e}^{2}-1}{2e-1}$} |
分析 将函数f(x)表示为分段函数形式,判断函数的单调性和极值,利用换元法将方程转化为一元二次方程,利用一元二次函数根与系数之间的关系进行求解即可.
解答 解:当x>0时,f(x)=$\frac{{e}^{x}}{x}$,函数的导数f′(x)=$\frac{{e}^{x}•x-{e}^{x}}{{x}^{2}}$=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
当x>1时,f′(x)>0,当0<x<1时,f′(x)<0,则当x=1时 函数取得极小值f(1)=e,
当x<0时,f(x)=-$\frac{{e}^{x}}{x}$,函数的导数f′(x)=-$\frac{{e}^{x}•x-{e}^{x}}{{x}^{2}}$=-$\frac{{e}^{x}(x-1)}{{x}^{2}}$,此时f′(x)>0恒成立,
此时函数为增函数,
作出函数f(x)的图象如图:![]()
设t=f(x),则t>e时,t=f(x)有3个根,
当t=e时,t=f(x)有2个根
当0<t<e时,t=f(x)有1个根,
当t≤0时,t=f(x)有0个根,
则f2(x)-2af(x)+a-1=0(m∈R)有三个相异的实数根,
等价为t2-2at+a-1=0(m∈R)有2个相异的实数根,
其中0<t<e,t=e,
当t=e时,e2-2ae+a-1=0,
即a=$\frac{{e}^{2}-1}{2e-1}$,
此时满足条件.
故选:D
点评 本题主要考查函数与方程的应用,利用换元法转化为一元二次函数,利用数形结合以及根与系数之间的关系是解决本题的关键.综合性较强,有一定的难度.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com