精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=x3-12x.
(1)求f′(1)的值;
(2)求函数f(x)的单调区间.

分析 (1)求导数,即可求f′(1)的值;
(2)求导数,利用导数的正负求函数f(x)的单调区间.

解答 解:(1)因为f(x)=x3-12x,
所以f′(x)=3x2-12,所以f′(1)=-9.…(4分)
(2)f′(x)=3x2-12,
解f′(x)>0,得x<-2或x>2.…(6分)
解f′(x)<0,得-2<x<2.…(8分)
所以(-∞,-2)和(2,+∞)为函数f(x)的单调增区间,(-2,2)为函数f(x)的单调减区间.…(10分)

点评 本题考查导数知识的运用,考查函数的单调性,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知α为第二象限角,sinα=$\frac{3}{5}$,则tan2α=$-\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|ax+1|,a∈R.
(Ⅰ)若?x∈R,f(x)+f(x-2)≥1恒成立,求实数a的取值范围;
(Ⅱ)若f($\frac{a-1}{a}$)+f($\frac{b-1}{a}$)+f($\frac{c-1}{a}$)=4,求f($\frac{{{a^2}-1}}{a}$)+f($\frac{{{b^2}-1}}{a}$)+f($\frac{{{c^2}-1}}{a}$)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在极坐标系中,圆C的方程为ρ=2acosθ(a≠0),以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为$\left\{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}\right.$(t为参数).
(1)求圆C的直角坐标方程(化为标准方程)和直线l的极坐标方程;
(2)若直线l与圆C只有一个公共点,且a<1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax4•lnx+bx4-c在x=1处取得极值-3-c.
(1)试求实数a,b的值;
(2)试求函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥-2c2恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的图象如图所示,则导函数y=f′(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=x3-3ax+b(a>0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\frac{{e}^{x}}{|x|}$,关于x的方程f2(x)-2af(x)+a-1=0(a∈R)有3个相异的实数根,则a的取值范围是(  )
A.($\frac{{e}^{2}-1}{2e-1}$,+∞)B.(-∞,$\frac{{e}^{2}-1}{2e-1}$)C.(0,$\frac{{e}^{2}-1}{2e-1}$)D.{$\frac{{e}^{2}-1}{2e-1}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{{2}^{x}-1}$+a是奇函数.
(1)求a的值和函数f(x)的定义域;
(2)用单调性的定义证明:函数f(x)在(0,+∞)上是减函数;
(3)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

同步练习册答案