分析 (Ⅰ)化简f(x)+f(x-2)=|ax+1|+|2a-ax-1|,由绝对值不等式可得f(x)+f(x-2)的最小值为2a,可得|2a|≥1,解得a的范围;
(Ⅱ)化简条件可得|a|+|b|+|c|=4,化简要求的式子为a2+b2+c2,由基本不等式可得所求最小值.
解答 解:(Ⅰ)由题意可得f(x)+f(x-2)=|ax+1|+|a(x-2)+1|
=|ax+1|+|2a-ax-1|≥|ax+1+2a-ax-1|=|2a|,
可见,|2a|≥1,即$a≥\frac{1}{2}$或$a≤-\frac{1}{2}$;
(Ⅱ)由$f(\frac{a-1}{a})+f(\frac{b-1}{a})+f(\frac{c-1}{a})=4$知|a|+|b|+|c|=4,
而$f(\frac{{{a^2}-1}}{a})+f(\frac{{{b^2}-1}}{a})+f(\frac{{{c^2}-1}}{a})$=a2+b2+c2,
因为16=(|a|+|b|+|c|)2=a2+b2+c2+2|ab|+2|ac|+2|bc|,
又2|ab|≤a2+b2,2|ac|≤a2+c2,2|cb|≤c2+b2,
所以,16≤3(a2+b2+c2),即${a^2}+{b^2}+{c^2}≥\frac{16}{3}$,等号成立当且仅当a=b=c.
因此,$f(\frac{{{a^2}-1}}{a})+f(\frac{{{b^2}-1}}{a})+f(\frac{{{c^2}-1}}{a})$的最小值是$\frac{16}{3}$.
点评 本题考查绝对值不等式的性质,基本不等式的运用,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,3) | B. | [-2,3] | C. | (-∞,$\frac{1}{2}$) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com