精英家教网 > 高中数学 > 题目详情
1.如图,四棱锥P-ABCD中,底面ABCD为矩形,AB=2AD,平面PDA⊥平面ABCD,平面PDC⊥平面ABCD.
(1)求证:PD⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值.

分析 (1)推导出PD⊥CD,PD⊥AD,从而PD⊥平面ABCD,由此能证明PD⊥BD.
(2)设PD=AD=1,则AB=2,以D为原点,DA为x轴,DC为y轴,DC为z轴,建立空间直角坐标系,利用向量法能求出二面角A-PB-C的余弦值.

解答 证明:(1)∵四棱锥P-ABCD中,底面ABCD为矩形,AB=2AD,
平面PDA⊥平面ABCD,平面PDC⊥平面ABCD,
∴CD⊥AD,又平面PAD∩平面ABCD=AD,∴CD⊥平面PAD,∴PD⊥CD,
∵平面PCD∩平面ABCD=CD,∴AD⊥平面PDC,∴PD⊥AD,
∵AD∩CD=D,∴PD⊥平面ABCD,
∵BD?平面ABCD,∴PD⊥BD.
解:(2)设PD=AD=1,则AB=2,
以D为原点,DA为x轴,DC为y轴,DC为z轴,建立空间直角坐标系,
A(1,0,0),B(1,2,0),C(0,2,0),P(0,0,1),
$\overrightarrow{PA}$=(1,0,-1),$\overrightarrow{PB}$=(1,2,-1),$\overrightarrow{PC}$=(0,2,-1),
设平面PAB的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PA}=x-z=0}\\{\overrightarrow{n}•\overrightarrow{PB}=2y-z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(2,1,2),
设平面PBC的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{PB}=a+2b-c=0}\\{\overrightarrow{m}•\overrightarrow{PC}=2b-c=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=(0,1,2),
设二面角A-PB-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{5}{\sqrt{9}•\sqrt{5}}$=$\frac{\sqrt{5}}{3}$.
∴二面角A-PB-C的余弦值为$\frac{\sqrt{5}}{3}$.

点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.有如下命题:
①x∈(0,+∞)时,sinx<x恒成立;
②sin$\frac{3}{2}$cos$\frac{3}{2}$<0;
③sin2x=$\frac{ta{n}^{2}x}{1+ta{n}^{2}x}$;
④f(x)=|sinx|最小正周期是π,
其中正确命题的代号是(  )
A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=${log_{\frac{1}{3}}}({x^2}-ax+3a)$在[1,+∞)上单调递减,则实数a的取值范围是(  )
A.(-∞,2]B.[2,+∞)C.$[-\frac{1}{2},2]$D.$(-\frac{1}{2},2]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直三棱锥P-ABC中,侧面PAB与底面ABC垂直,且PD垂直底面,PD=BD,△ACB是直角三角形,AD=$\frac{1}{3}$DB;BC=$\sqrt{3}$AC.
(1)求证:PA⊥CD;
(2)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,在三棱柱ABC-A1B1C1中,O,D,E分别是棱AB,A1B1,AA1的中点,点F在棱AB上,且AF=$\frac{1}{4}$AB,AB=BC=CA=AA1,且侧棱AA1⊥平面ABC.
(1)求证:EF∥平面BCD;
(2)求二面角C-BC1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,PA是圆的切线,A是切点,M是PA的中点,过点M作圆的割线交圆于点C,B,连接PB,PC分别交圆于点E,F,EF与BC的交点为N.
求证:
(Ⅰ)EF∥PA;
(Ⅱ)MA•NE=MC•NB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=alnx+$\frac{1}{2}$x2+(1-b)x.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为8x-2y-3=0,求a,b的值;
(Ⅱ)若b=a+1,x1,x2是f(x)的两个极值点,证明:f(x1)+f(x2)<8ln2-12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知α为第二象限角,sinα=$\frac{3}{5}$,则tan2α=$-\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|ax+1|,a∈R.
(Ⅰ)若?x∈R,f(x)+f(x-2)≥1恒成立,求实数a的取值范围;
(Ⅱ)若f($\frac{a-1}{a}$)+f($\frac{b-1}{a}$)+f($\frac{c-1}{a}$)=4,求f($\frac{{{a^2}-1}}{a}$)+f($\frac{{{b^2}-1}}{a}$)+f($\frac{{{c^2}-1}}{a}$)的最小值.

查看答案和解析>>

同步练习册答案