精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=${log_{\frac{1}{3}}}({x^2}-ax+3a)$在[1,+∞)上单调递减,则实数a的取值范围是(  )
A.(-∞,2]B.[2,+∞)C.$[-\frac{1}{2},2]$D.$(-\frac{1}{2},2]$

分析 可看出该函数是由t=x2-ax+3a和$y=lo{g}_{\frac{1}{3}}t$复合而成的复合函数,这样根据二次函数、对数函数和复合函数的单调性及对数函数的定义域便可建立关于a的不等式组,解出a的取值范围即可.

解答 解:设y=f(x),令x2-ax+3a=t,则$y=lo{g}_{\frac{1}{3}}t$单调递减;
∵f(x)在[1,+∞)上单调递减;
∴t=x2-ax+3a在[1,+∞)上单调递增,且满足t>0;
∴$\left\{\begin{array}{l}{\frac{a}{2}≤1}\\{{1}^{2}-a•1+3a>0}\end{array}\right.$;
解得,$-\frac{1}{2}<a≤2$;
∴实数a的取值范围是$(-\frac{1}{2},2]$.
故选D.

点评 本题考查二次函数、对数函数和复合函数的单调性,以及复合函数的定义,对数函数的定义域.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2-x-1|,则函数y=f(x)-1在区间[-2,4]上的零点个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.平面直角坐标系中,在伸缩变换φ:$\left\{\begin{array}{l}{x′=xcos\frac{π}{6}}\\{y′=ysin\frac{π}{6}}\end{array}\right.$的作用下,正弦曲线y=sinx变换为曲线(  )
A.y′=$\frac{\sqrt{3}}{2}$sin2x′B.y′=2sin2x′C.y′=$\frac{1}{2}$sin$\frac{2\sqrt{3}}{3}$x′D.y′=$\sqrt{3}$sin2x′

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=3x-4x3(x∈[-1,0])的最小值是(  )
A.-$\frac{1}{2}$B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}$(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}$得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.
(1)写出曲线 C与曲线C'的极坐标的方程;
(2)若过点A(2$\sqrt{2}$,$\frac{π}{4}}$)(极坐标)且倾斜角为$\frac{π}{3}$的直线l与曲线C交于M,N两点,试求|AM|•|AN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设f(x)=$\left\{\begin{array}{l}\begin{array}{l}{x+\frac{1}{x},}{x>0}\end{array}\\ \begin{array}{l}{x{,_{\;}}}{\;}{x<0}\end{array}\end{array}$,若关于x的方程[f(x)]2-(a+3)f(x)+a=0恰有3个不同的实数根,则实数a的取值范围是(-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知m,n∈N*且1<m<n,试用导数证明不等式:(1+m)n>(1+n)m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD为矩形,AB=2AD,平面PDA⊥平面ABCD,平面PDC⊥平面ABCD.
(1)求证:PD⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,∠BAC的平分线交BC于点D,交△ABC的外接圆于点E,延长AC交△DCE的外接圆于点F,DF=$\sqrt{14}$
(Ⅰ)求BD;
(Ⅱ)若∠AEF=90°,AD=3,求DE的长.

查看答案和解析>>

同步练习册答案