精英家教网 > 高中数学 > 题目详情
9.有如下命题:
①x∈(0,+∞)时,sinx<x恒成立;
②sin$\frac{3}{2}$cos$\frac{3}{2}$<0;
③sin2x=$\frac{ta{n}^{2}x}{1+ta{n}^{2}x}$;
④f(x)=|sinx|最小正周期是π,
其中正确命题的代号是(  )
A.①②③B.①③④C.②③④D.①②④

分析 根据题意,结合三角函数的图象与性质,利用三角恒等变换与同角的三角函数关系,对题目中的命题进行分析、判断正误即可.

解答 解:对于①,设f(x)=sinx-x,则f′(x)=cosx-1≤0,
所以f(x)是定义域(0,+∞)上的单调减函数,
所以f(x)<f(0)=0,即sinx<x;
所以x∈(0,+∞)时,sinx<x恒成立,命题①正确;
对于②,sin$\frac{3}{2}$cos$\frac{3}{2}$=$\frac{1}{2}$sin3=$\frac{1}{2}$sin(π-3)>0,故命题②错误;
对于③,sin2x=$\frac{{sin}^{2}x}{{sin}^{2}x{+cos}^{2}x}$=$\frac{\frac{{sin}^{2}x}{{cos}^{2}x}}{\frac{{sin}^{2}x}{{cos}^{2}x}+1}$=$\frac{ta{n}^{2}x}{1+ta{n}^{2}x}$,故命题③正确;
对于④,根据函数f(x)=|sinx|的图象与性质知,它的最小正周期是π,命题④正确;
综上,正确命题的序号是①③④.
故选:B.

点评 本题考查了三角函数的图象与性质的应用问题,也考查了三角恒等变换与同角的三角函数关系应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设F1、F2分别为椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,点D为椭圆E的左顶点,且|CD|=$\sqrt{5}$,椭圆的离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆E的方程;
(2)对于正常数λ,如果存在过点M(x0,0)(-a<x0<a)的直线l与椭圆E交于A、B两点,使得S△AOB=λS△AOD(其中O为原点),则称点M为椭圆E的“λ分点”.试判断点M(1,0)是否为椭圆E的“2分点”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)是定义在R上的偶函数,且对于任意的x∈[0,+∞),满足f(x+2)=f(x),若当x∈[0,2)时,f(x)=|x2-x-1|,则函数y=f(x)-1在区间[-2,4]上的零点个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=lnx,g(x)=ex
(1)判断函数y=f(x)-ag(x)极值点的个数;
(2)求证:当 x∈(0,1)时,g(x)>$\frac{2}{2-{x}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρsinθ+3=0,A、B两点极坐标分别为(1,π)、(1,0).
(1)求曲线C的参数方程;
(2)在曲线C上取一点P,求|AP|2+|BP|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.不定方程x+y+z=12的非负整数解的个数为91.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.平面直角坐标系中,在伸缩变换φ:$\left\{\begin{array}{l}{x′=xcos\frac{π}{6}}\\{y′=ysin\frac{π}{6}}\end{array}\right.$的作用下,正弦曲线y=sinx变换为曲线(  )
A.y′=$\frac{\sqrt{3}}{2}$sin2x′B.y′=2sin2x′C.y′=$\frac{1}{2}$sin$\frac{2\sqrt{3}}{3}$x′D.y′=$\sqrt{3}$sin2x′

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=3x-4x3(x∈[-1,0])的最小值是(  )
A.-$\frac{1}{2}$B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD为矩形,AB=2AD,平面PDA⊥平面ABCD,平面PDC⊥平面ABCD.
(1)求证:PD⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值.

查看答案和解析>>

同步练习册答案