17£®ÉèF1¡¢F2·Ö±ðΪÍÖÔ²E£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬µãDΪÍÖÔ²EµÄ×󶥵㣬ÇÒ|CD|=$\sqrt{5}$£¬ÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©¶ÔÓÚÕý³£Êý¦Ë£¬Èç¹û´æÔÚ¹ýµãM£¨x0£¬0£©£¨-a£¼x0£¼a£©µÄÖ±ÏßlÓëÍÖÔ²E½»ÓÚA¡¢BÁ½µã£¬Ê¹µÃS¡÷AOB=¦ËS¡÷AOD£¨ÆäÖÐOΪԭµã£©£¬Ôò³ÆµãMΪÍÖÔ²EµÄ¡°¦Ë·Öµã¡±£®ÊÔÅжϵãM£¨1£¬0£©ÊÇ·ñΪÍÖÔ²EµÄ¡°2·Öµã¡±£®

·ÖÎö £¨1£©ÀûÓÃÒÑÖªÌõ¼þ£¬Áгö·½³ÌÇó½âÍÖÔ²µÄ¼¸ºÎÁ¿£¬¼´¿ÉµÃµ½½á¹û£®
£¨2£©Èç¹ûµãMΪÍÖÔ²CµÄ¡°2·Öµã¡°£¬¼´ÓÐS¡÷AOB=2S¡÷AOD£¬ÉèÖ±ÏßlµÄ·½³ÌΪx=my+x0£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬¼ÆËã¼´¿ÉµÃµ½ËùÇó·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâF1¡¢F2·Ö±ðΪÍÖÔ²E£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬
µãDΪÍÖÔ²EµÄ×󶥵㣬ÇÒ|CD|=$\sqrt{5}$£¬ÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£®
¿ÉµÃ£º${a^2}+{b^2}=5£¬\frac{{\sqrt{3}}}{2}=\sqrt{1-\frac{b^2}{a^2}}$µÃa2=4£¬b2=1£¬
ÍÖÔ²EµÄ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®
£¨2£©¼ÙÉèMÊÇÍÖÔ²EµÄ¡°2·Öµã¡±£¬
Ôò´æÔÚ¹ýµãMµÄÖ±ÏßlÓëÍÖÔ²E½»ÓÚA¡¢BÁ½µã£¬Ê¹µÃS¡÷AOB=2S¡÷AOD£¬
ÏÔȻֱÏßlÓëyÖá´¹Ö±£¬Éèl£ºx=my+1£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
ÓÉ$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ x=my+1\end{array}\right.$£¬µÃ£¨m2+4£©y2+2my-3=0£¬ËùÒÔ${y_1}+{y_2}=\frac{-2m}{{{m^2}+4}}$£¬¢Ù${y_1}{y_2}=\frac{-3}{{{m^2}+4}}$£®¢Ú
ÒòΪS¡÷AOB=2S¡÷AOD£¬¡à$\frac{1}{2}£¨{|{y_1}|+|{y_2}|}£©=2¡Á\frac{1}{2}¡Á2|{y_1}|£¬¼´|{y_2}|=3|{y_1}|$£®
ÓÉ¢ÚÖªy1y2£¼0£¬¡ày2=-3y1£¬¢Û½«¢Û´úÈë¢ÙµÃ${y_1}=\frac{m}{{{m^2}+4}}$£¬¢Ü
½«¢Û´úÈë¢ÚµÃ$y_1^2=\frac{1}{{{m^2}+4}}$£¬¢Ý½«¢Ü´úÈë¢ÝµÃ$\frac{m^2}{{{m^2}+4}}=1$£¬Î޽⣮
ËùÒÔµãM£¨1£¬0£©²»ÊÇÍÖÔ²EµÄ¡°2·Öµã¡±£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Í¬Ê±¿¼²éÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=|x-3|+|2x+t|£¬t¡ÊR£®
£¨1£©µ±t=1ʱ£¬½â²»µÈʽf£¨x£©¡Ý5£»
£¨2£©Èô´æÔÚʵÊýaÂú×ãf£¨a£©+|a-3|£¼2£¬ÇótµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®º¯Êýf£¨x£©=$\frac{cosx}{sinx+\sqrt{2}}$£¨x¡Ê[-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$]£©µÄµ¥µ÷µÝ¼õÇø¼äÊÇ£¨-$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÇúÏß$\left\{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©µÄÆÕͨ·½³ÌΪx2+y2=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ÈýÀâÖùABC-A1B1C1ΪֱÈýÀâÖù£¬ABCDΪƽÐÐËıßÐΣ¬AD=2CD£¬¡ÏADC=60¡ã£®
£¨1£©ÈôAA1=AC£¬ÇóÖ¤£ºAC1¡ÍÆ½ÃæA1B1CD£»
£¨2£©ÈôCD=1£¬µ±$\frac{A{A}_{1}}{AC}$Ϊ¶àÉÙʱ£¬¶þÃæ½ÇC-A1D-C1µÄÓàÏÒֵΪ$\frac{\sqrt{2}}{4}$£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©¼ÈÊÇżº¯ÊýÓÖÊÇÖÜÆÚº¯Êý£®Èôf£¨x£©µÄ×îСÕýÖÜÆÚÊǦУ¬ÇÒµ±x¡Ê[0£¬$\frac{¦Ð}{2}$]ʱ£¬f£¨x£©=cosx£¬Ôòf£¨$\frac{5¦Ð}{3}$£©µÄֵΪ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®$\frac{1}{2}$C£®-$\frac{\sqrt{3}}{2}$D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ·½³ÌΪx-y+4=0£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÔòËüµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{2}}{2}$B£®$\sqrt{2}$C£®$\sqrt{3}$D£®$\frac{\sqrt{6}}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ËÄÀâ×¶P-ABCD£¬DC¡ÎAB£¬PB¡ÍAB£¬Æ½ÃæPAB¡ÍÆ½ÃæABCD£¬AD=DC=CB=1£¬AB=BP=2
£¨1£©ÇóÖ¤£ºAD¡ÍÆ½ÃæPBD
£¨2£©ÉèÆ½ÃæPADÓëÆ½ÃæCBPµÄ½»ÏßΪl£¬ÔÚͼÉÏ×÷³öÖ±Ïßl£¬Çó¶þÃæ½ÇA-l-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÓÐÈçÏÂÃüÌ⣺
¢Ùx¡Ê£¨0£¬+¡Þ£©Ê±£¬sinx£¼xºã³ÉÁ¢£»
¢Úsin$\frac{3}{2}$cos$\frac{3}{2}$£¼0£»
¢Ûsin2x=$\frac{ta{n}^{2}x}{1+ta{n}^{2}x}$£»
¢Üf£¨x£©=|sinx|×îСÕýÖÜÆÚÊǦУ¬
ÆäÖÐÕýÈ·ÃüÌâµÄ´úºÅÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÛB£®¢Ù¢Û¢ÜC£®¢Ú¢Û¢ÜD£®¢Ù¢Ú¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸