| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{6}}{6}$ |
分析 设Q$(\sqrt{3}cosα,sinα)$,利用点到直线的距离公式可得:点Q到直线l的距离d=$\frac{|\sqrt{3}cosα-sinα+4|}{\sqrt{2}}$,利用和差公式、三角函数的值域即可得出.
解答 解:设Q$(\sqrt{3}cosα,sinα)$,则点Q到直线l的距离d=$\frac{|\sqrt{3}cosα-sinα+4|}{\sqrt{2}}$
=$\frac{|2cos(α+\frac{π}{6})+4|}{\sqrt{2}}$≥$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,当且仅当$cos(α+\frac{π}{6})$=-1时取等号.
∴点Q到直线l的距离的最小值为$\sqrt{2}$.
故选:B.
点评 本题考查了参数方程的应用、点到直线的距离公式、和差公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y′=$\frac{\sqrt{3}}{2}$sin2x′ | B. | y′=2sin2x′ | C. | y′=$\frac{1}{2}$sin$\frac{2\sqrt{3}}{3}$x′ | D. | y′=$\sqrt{3}$sin2x′ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com