20£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$ £¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cos¦È}\\{y=cos2¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨1£©½«ÇúÏßCµÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£»
£¨2£©ÇóÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cos¦È}\\{y=cos2¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓñ¶½Ç¹«Ê½¿ÉµÃy=cos2¦È=2cos2¦È-1=$2¡Á£¨\frac{x}{4}£©^{2}$-1£¬»¯¼òÕûÀí¿ÉµÃÇúÏßCµÄÆÕͨ·½³Ì£¬×¢ÒâxµÄȡֵ·¶Î§£®
£¨2£©Ö±ÏßlµÄÆÕͨ·½³ÌΪx-y+3=0£¬ÀûÓõ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃ£ºÇúÏßCÉϵĵ㵽lµÄ¾àÀëd=$\frac{|4cos¦È-cos2¦È+3|}{\sqrt{2}}$=$\frac{|2£¨cos¦È-1£©^{2}-6|}{\sqrt{2}}$£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ßÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4cos¦È}\\{y=cos2¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡ày=cos2¦È=2cos2¦È-1=$2¡Á£¨\frac{x}{4}£©^{2}$-1£¬
»¯Îªy=$\frac{{x}^{2}}{8}$-1£¬cos¦È¡Ê[-1£¬1]£¬¿ÉµÃx¡Ê[-1£¬1]£®
¡àÇúÏßCµÄÆÕͨ·½³ÌΪ£ºy=$\frac{{x}^{2}}{8}$-1£¬x¡Ê[-1£¬1]£®
£¨2£©Ö±ÏßlµÄÆÕͨ·½³ÌΪx-y+3=0£¬ÇúÏßCÉϵĵ㵽lµÄ¾àÀëd=$\frac{|4cos¦È-cos2¦È+3|}{\sqrt{2}}$=$\frac{|2£¨cos¦È-1£©^{2}-6|}{\sqrt{2}}$¡Ü$\frac{6}{\sqrt{2}}$=3$\sqrt{2}$£¬
µ±cos¦È=1ʱ£¬dÈ¡µÃ×î´óÖµ3$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢±¶½Ç¹«Ê½¡¢ºÍ²î¹«Ê½¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÒÑÖªÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊÇÆ½ÐÐËıßÐΣ¬PA¡ÍÆ½ÃæABCD£¬PA=$\sqrt{3}$£¬AB=1£¬AD=2£¬¡ÏBAD=120¡ã£¬E£¬G£¬H·Ö±ðÊÇBC£¬PC£¬ADµÄÖе㣮
£¨1£©ÇóÖ¤£ºPH¡ÎÆ½ÃæGED£»
£¨2£©Çó¶þÃæ½ÇG-ED-AµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¿ÉÒÔ½«Ô²x2+y2=1±äΪÍÖÔ²$\frac{{x{'^2}}}{4}$+$\frac{{y{'^2}}}{9}$=1µÄÉìËõ±ä»»Îª£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}x=2x'\\ y=3y'\end{array}\right.$B£®.$\left\{\begin{array}{l}x=\frac{1}{2}x'\\ y=\frac{1}{3}y'\end{array}\right.$C£®.$\left\{\begin{array}{l}x=4x'\\ y=9y'\end{array}\right.$D£®.$\left\{\begin{array}{l}x=\frac{1}{4}x'\\ y=\frac{1}{9}y'\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®º¯Êýf£¨x£©=$\frac{cosx}{sinx+\sqrt{2}}$£¨x¡Ê[-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$]£©µÄµ¥µ÷µÝ¼õÇø¼äÊÇ£¨-$\frac{¦Ð}{4}$£¬$\frac{¦Ð}{2}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÒÑÖªÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{6}}$£©=1£¬Ô²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+2cos¦È\\ y=-\sqrt{3}+2sin¦È\end{array}$£¨¦ÈΪ²ÎÊý£©£®ÔòÖ±ÏßlÓëÔ²CÏཻËùµÃÏÒ³¤Îª$\sqrt{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÇúÏß$\left\{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©µÄÆÕͨ·½³ÌΪx2+y2=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÈçͼËùʾµÄ¼¸ºÎÌåÖУ¬ÈýÀâÖùABC-A1B1C1ΪֱÈýÀâÖù£¬ABCDΪƽÐÐËıßÐΣ¬AD=2CD£¬¡ÏADC=60¡ã£®
£¨1£©ÈôAA1=AC£¬ÇóÖ¤£ºAC1¡ÍÆ½ÃæA1B1CD£»
£¨2£©ÈôCD=1£¬µ±$\frac{A{A}_{1}}{AC}$Ϊ¶àÉÙʱ£¬¶þÃæ½ÇC-A1D-C1µÄÓàÏÒֵΪ$\frac{\sqrt{2}}{4}$£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ·½³ÌΪx-y+4=0£¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÔòËüµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{2}}{2}$B£®$\sqrt{2}$C£®$\sqrt{3}$D£®$\frac{\sqrt{6}}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖª²»µÈʽ|x+2|-|x|¡ÜaµÄ½â¼¯²»Êǿռ¯£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸