精英家教网 > 高中数学 > 题目详情
11.可以将圆x2+y2=1变为椭圆$\frac{{x{'^2}}}{4}$+$\frac{{y{'^2}}}{9}$=1的伸缩变换为(  )
A.$\left\{\begin{array}{l}x=2x'\\ y=3y'\end{array}\right.$B..$\left\{\begin{array}{l}x=\frac{1}{2}x'\\ y=\frac{1}{3}y'\end{array}\right.$C..$\left\{\begin{array}{l}x=4x'\\ y=9y'\end{array}\right.$D..$\left\{\begin{array}{l}x=\frac{1}{4}x'\\ y=\frac{1}{9}y'\end{array}\right.$

分析 通过x与x′,y与y′的数值关系,即可把圆x2+y2=1变成椭圆$\frac{{x{'^2}}}{4}$+$\frac{{y{'^2}}}{9}$=1,得到伸缩变换.

解答 解:对于圆x2+y2=1的方程,令$\left\{\begin{array}{l}{x=\frac{1}{2}x′}\\{y=\frac{1}{3}y′}\end{array}\right.$,
即为把圆x2+y2=1变成椭圆$\frac{{x{'^2}}}{4}$+$\frac{{y{'^2}}}{9}$=1,
故选:B.

点评 本题考查了圆变换为椭圆的伸缩变换,考查了变形能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x3+ax2+2x在[0,2]上既有极大值又有极小值,则实数a的取值范围为(  )
A.(-6,0)B.$({-6,-\sqrt{6}})$C.(-3.5,0)D.(-3.5,$\sqrt{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PA⊥底面ABCD,M、N分别为PD、AC的中点.
(1)证明:平面PAC⊥平面MND;
(2)若AB=2AP,求二面角A-MN-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x+4|-|x-a|.
(1)当a=1时,解不等式f(x)≥10;
(2)当a>0时,f(x)≥a2-3恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,A,B是圆O上两点,延长AB至点C,满足AB=2BC=2,过C作直线CD与圆O相切于点D,∠ADB的平分线交AB于点E.
(I)求AE的长;
(II)若∠DBA=60°,求△BDE的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,周期为π且在[0,$\frac{π}{2}$]上是减函数的是(  )
A.y=cosxB.y=cos2xC.y=sin2xD.y=-tan2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评,某校高二年级有男生500人,女生400人,为了了解性别对维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频率统计表如表:
表一:男生测评结果统计
等级优秀合格尚待改进
频数15x5
表二:女生测评结果统计
等级优秀合格尚待改进
频数153y
(1)计算x,y的值;
(2)由表一表二中统计数据完成2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生女生总计
优秀
非优秀
总计
参考数据:
P(K2≥k00.100.0500.0250.0100.001
k02.7063.8415.0246.63510.828
(参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$ (t为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=cos2θ}\end{array}\right.$(θ为参数).
(1)将曲线C的参数方程化为普通方程;
(2)求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(a-$\frac{1}{2}$)(2x-1)+|lnx|.
(1)当a=1时,求f(x)的单调区间;
(2)若f(x)<2x2在(1,$\frac{5}{4}$)内恒成立,求满足条件的a的最大整数值.

查看答案和解析>>

同步练习册答案