精英家教网 > 高中数学 > 题目详情
2.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PA⊥底面ABCD,M、N分别为PD、AC的中点.
(1)证明:平面PAC⊥平面MND;
(2)若AB=2AP,求二面角A-MN-D的正弦值.

分析 (1)推导出DN⊥AC,PA⊥DN,从而DN⊥平面PAC,由此能证明平面PAC⊥平面MND.
(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出二面角A-MN-D的正弦值.

解答 证明:(1)∵在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PA⊥底面ABCD,
M、N分别为PD、AC的中点,DN?平面ABCD,
∴DN⊥AC,PA⊥DN,
又AC∩PA=A,
∴DN⊥平面PAC,
∵DN?平面MND,
∴平面PAC⊥平面MND.
解:(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
设AB=2AP=1,则A(0,0,0),M(0,1,$\frac{1}{2}$),N(1,1,0),D(0,2,0),
$\overrightarrow{MA}$=(0,-1,-$\frac{1}{2}$),$\overrightarrow{MN}$=(1,0,-$\frac{1}{2}$),$\overrightarrow{MD}$=(0,1,-$\frac{1}{2}$),
设平面AMN的法向量$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{MA}=-y-\frac{1}{2}z=0}\\{\overrightarrow{m}•\overrightarrow{MN}=x-\frac{1}{2}z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{m}$=(1,-1,2),
设平面DMN的法向量$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{MD}=b-\frac{1}{2}c=0}\\{\overrightarrow{n}•\overrightarrow{MN}=a-\frac{1}{2}c=0}\end{array}\right.$,
取a=1,得$\overrightarrow{n}$=(1,1,2),
设二面角A-MN-D的平面角为θ,
则|cosθ|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4}{\sqrt{6}•\sqrt{6}}$=$\frac{2}{3}$,sin$θ=\sqrt{1-(\frac{2}{3})^{2}}$=$\frac{\sqrt{5}}{3}$.
∴二面角A-MN-D的正弦值为$\frac{\sqrt{5}}{3}$.

点评 本题考查面面垂直的证明,考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过点A(2,0).
(I)求椭圆的方程;
(Ⅱ)设直线l经过点(1,0)与椭圆交于B、C(不与A重合)两点,
(i)若△ABC的面积为$\frac{\sqrt{13}}{4}$,求直线l的方程;
(ii)若AB与AC的斜率之和为3,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=3sin(2x-$\frac{π}{3}}$),x∈R.
(1)求f(${\frac{π}{4}}$)的值;
(2)设α∈(0,$\frac{π}{2}}$),β∈(${\frac{π}{2}$,π),f(${\frac{2π}{3}$-$\frac{α}{2}}$)=$\frac{9}{5}$,f(${\frac{β}{2}$+$\frac{5π}{12}}$)=-$\frac{36}{13}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,PA=$\sqrt{3}$,AB=1,AD=2,∠BAD=120°,E,G,H分别是BC,PC,AD的中点.
(1)求证:PH∥平面GED;
(2)求二面角G-ED-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在直角坐标系xOy中,曲线C1的方程为x2+y2=2,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2-t}\\{y=t}\end{array}\right.$(t为参数).以原点O为极点,x轴非负半轴为极轴,建立极坐标系,则曲线C1与C2的交点的极坐标为($\sqrt{2}$,$\frac{π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-3|+|2x+t|,t∈R.
(1)当t=1时,解不等式f(x)≥5;
(2)若存在实数a满足f(a)+|a-3|<2,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx+ax2-1,且f′(1)=-1.
(1)求f(x)的解析式;
(2)证明:函数y=f(x)-xex+x2的图象在直线y=-x-1的图象下方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.可以将圆x2+y2=1变为椭圆$\frac{{x{'^2}}}{4}$+$\frac{{y{'^2}}}{9}$=1的伸缩变换为(  )
A.$\left\{\begin{array}{l}x=2x'\\ y=3y'\end{array}\right.$B..$\left\{\begin{array}{l}x=\frac{1}{2}x'\\ y=\frac{1}{3}y'\end{array}\right.$C..$\left\{\begin{array}{l}x=4x'\\ y=9y'\end{array}\right.$D..$\left\{\begin{array}{l}x=\frac{1}{4}x'\\ y=\frac{1}{9}y'\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示的几何体中,三棱柱ABC-A1B1C1为直三棱柱,ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=1,当$\frac{A{A}_{1}}{AC}$为多少时,二面角C-A1D-C1的余弦值为$\frac{\sqrt{2}}{4}$?

查看答案和解析>>

同步练习册答案