精英家教网 > 高中数学 > 题目详情
12.如图所示的几何体中,三棱柱ABC-A1B1C1为直三棱柱,ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=1,当$\frac{A{A}_{1}}{AC}$为多少时,二面角C-A1D-C1的余弦值为$\frac{\sqrt{2}}{4}$?

分析 (1)推导出AA1⊥平面ABC,A1C⊥AC1.CD⊥AC,AA1⊥CD,从而CD⊥平面A1ACC1,由此能证明AC1⊥平面A1B1CD.
(2)以C为原点,分别以CA,CD,CC1为x,y,z轴,建立空间直角坐标系,利用向量法能求出当AA1=AC时,二面角C-A1D-C1的余弦值为$\frac{\sqrt{2}}{4}$.

解答 证明:(1)因为三棱柱ABC-A1B1C1为直三棱柱,所以AA1⊥平面ABC,
所以A1ACC1为正方形,所以A1C⊥AC1
又AD=2CD,∠ADC=60°,
由余弦定理得:
AC2=AD2+CD2-2AC•DC•cos60°,
所以AC=$\sqrt{3}CD$,所以AD2=AC2+CD2,所以CD⊥AC,
又AA1⊥CD,AA1∩AC=A,所以CD⊥平面A1ACC1
又AC1?平面A1ACC1,所以CD⊥AC1
又A1C∩CD=C,所以AC1⊥平面A1B1CD.
解:(2)以C为原点,分别以CA,CD,CC1为x,y,z轴,建立空间直角坐标系,设AA1=λAC,
则C(0,0,0),C1(0,0,$\sqrt{3}λ$),D(0,1,0),A1($\sqrt{3},0,\sqrt{3}λ$),
$\overrightarrow{C{A}_{1}}$=($\sqrt{3},0,\sqrt{3}λ$),$\overrightarrow{CD}$=(0,1,0),$\overrightarrow{{C}_{1}{A}_{1}}$=($\sqrt{3},0,0$),$\overrightarrow{{C}_{1}D}$=(0,1,-$\sqrt{3}λ$),
设平面A1DC的法向量为$\overrightarrow{m}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{C{A}_{1}}•\overrightarrow{m}=\sqrt{3}x+\sqrt{3}λz=0}\\{\overrightarrow{CD}•\overrightarrow{m}=y=0}\end{array}\right.$,令z=1,得$\overrightarrow{m}$=(-λ,0,1),
设平面A1DC1的法向量为$\overrightarrow{n}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{{C}_{1}{A}_{1}}•\overrightarrow{n}=\sqrt{3}a=0}\\{\overrightarrow{{C}_{1}D}•\overrightarrow{n}=b-\sqrt{3}λc=0}\end{array}\right.$,令c=1,得$\overrightarrow{n}$=(0,$\sqrt{3}λ$,1),
由cosθ=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{\sqrt{2}}{4}$,得$\frac{1}{\sqrt{{λ}^{2}-1}•\sqrt{3{λ}^{2}+1}}$=$\frac{\sqrt{2}}{4}$,
解得λ=-1(舍),或λ=1,
所以当AA1=AC,即$\frac{A{A}_{1}}{AC}$=1时,二面角C-A1D-C1的余弦值为$\frac{\sqrt{2}}{4}$.

点评 本题考查线面垂直的证明,考查满足二面角的余弦值的线段比值的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PA⊥底面ABCD,M、N分别为PD、AC的中点.
(1)证明:平面PAC⊥平面MND;
(2)若AB=2AP,求二面角A-MN-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评,某校高二年级有男生500人,女生400人,为了了解性别对维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频率统计表如表:
表一:男生测评结果统计
等级优秀合格尚待改进
频数15x5
表二:女生测评结果统计
等级优秀合格尚待改进
频数153y
(1)计算x,y的值;
(2)由表一表二中统计数据完成2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.
男生女生总计
优秀
非优秀
总计
参考数据:
P(K2≥k00.100.0500.0250.0100.001
k02.7063.8415.0246.63510.828
(参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$ (t为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=4cosθ}\\{y=cos2θ}\end{array}\right.$(θ为参数).
(1)将曲线C的参数方程化为普通方程;
(2)求曲线C上的点到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数m,n满足m<0,n>0,则下列说法一定正确的是(  )
A.log2(-m)>log2nB.$\frac{n}{m^3}<\frac{1}{n}$C.|m|<|n|D.$\root{3}{m}>\root{3}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设F1、F2分别为椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,点D为椭圆E的左顶点,且|CD|=$\sqrt{5}$,椭圆的离心率为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆E的方程;
(2)对于正常数λ,如果存在过点M(x0,0)(-a<x0<a)的直线l与椭圆E交于A、B两点,使得S△AOB=λS△AOD(其中O为原点),则称点M为椭圆E的“λ分点”.试判断点M(1,0)是否为椭圆E的“2分点”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2$\sqrt{2}$,∠ABC=90°(如图1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角为θ(如图2),M、N分别是BD和BC中点.
(1)若E为线段AN上任意一点,求证:ME⊥BD;
(2)若θ=$\frac{π}{3}$,求AB与平面BCD所成角的正弦值.
(3)P、Q分别为线段AB与DN上一点,使得$\frac{AP}{PB}$=$\frac{NQ}{QD}$=λ(λ∈R).令PQ与BD和AN所成的角分别为θ1和θ2.求sinθ1+sinθ2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(a-$\frac{1}{2}$)(2x-1)+|lnx|.
(1)当a=1时,求f(x)的单调区间;
(2)若f(x)<2x2在(1,$\frac{5}{4}$)内恒成立,求满足条件的a的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρsinθ+3=0,A、B两点极坐标分别为(1,π)、(1,0).
(1)求曲线C的参数方程;
(2)在曲线C上取一点P,求|AP|2+|BP|2的最值.

查看答案和解析>>

同步练习册答案