精英家教网 > 高中数学 > 题目详情
4.在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2$\sqrt{2}$,∠ABC=90°(如图1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角为θ(如图2),M、N分别是BD和BC中点.
(1)若E为线段AN上任意一点,求证:ME⊥BD;
(2)若θ=$\frac{π}{3}$,求AB与平面BCD所成角的正弦值.
(3)P、Q分别为线段AB与DN上一点,使得$\frac{AP}{PB}$=$\frac{NQ}{QD}$=λ(λ∈R).令PQ与BD和AN所成的角分别为θ1和θ2.求sinθ1+sinθ2的取值范围.

分析 (1)取BC的中点N,连接AN交BD于M,利用线面垂直的判定定理证明BD⊥平面AMN即可.
(2)得到∠AMN是二面角A-BD-C的平面角θ,根据线面角的定义得到∠ABH是AB与平面BCD所成角,结合三角形的边角关系进行求解即可.
(3)根据条件得到θ12=$\frac{π}{2}$,利用消元法转化为三角函数,利用三角函数的性质进行求解即可.

解答 证明:(1)取BC的中点N,连接AN交BD于M,
∵BC=2AD=2AB=2$\sqrt{2}$,
∴四边形ABND是正方形,
∴AM⊥BD,MN⊥BD,
∵AM∩MN=M,
∴BD⊥平面AMN,
∵ME?平面AMN,
∴BD⊥ME,
解:(2)若θ=$\frac{π}{3}$,由(1)知∠AMN是二面角A-BD-C的平面角θ,
若θ=∠AMN=$\frac{π}{3}$,从而△AMN为等边三角形,
取MN的中点H,连接AH,
则AH⊥平面BCD,
连接BH,
则∠ABH是AB与平面BCD所成角,
则AB=$\sqrt{2}$,AM=MH=AN=1,
则AH=$\frac{\sqrt{3}}{2}$,
则sin∠ABH=$\frac{AH}{AB}$=$\frac{\frac{\sqrt{3}}{2}}{\sqrt{2}}$=$\frac{\sqrt{6}}{4}$.
解:(3)在BN线段取点R使得$\frac{AP}{PB}=\frac{NR}{RB}=\frac{NQ}{QD}=λ(λ∈R)$
从而易得PR∥AN且RQ∥BDA,θ1=∠PQR,θ2=∠QPR
另一方面,AM⊥BD,MN⊥BD,从而θ=∠AMN.
∵AM⊥BD,MN⊥BD,AM∩MN=M,
∴BD⊥AN,
∵PR∥AN,RQ∥BD,
∴∠PRQ=$\frac{π}{2}$,
从而有θ12=$\frac{π}{2}$,
则sinθ1+sinθ2=sinθ1+cosθ1=$\sqrt{2}$sin(θ1+$\frac{π}{4}$)∈(1,$\sqrt{2}$].

点评 本小题主要考查线面垂直的应用,线面角的求解,以及立体几何与三角函数的综合问题,考查空间想象能力、推理论证能力、运算求解能力等,考查化归与转化思想.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx+ax2-1,且f′(1)=-1.
(1)求f(x)的解析式;
(2)证明:函数y=f(x)-xex+x2的图象在直线y=-x-1的图象下方.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρsin(θ+$\frac{π}{6}}$)=1,圆C的参数方程为$\left\{\begin{array}{l}x=2+2cosθ\\ y=-\sqrt{3}+2sinθ\end{array}$(θ为参数).则直线l与圆C相交所得弦长为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示的几何体中,三棱柱ABC-A1B1C1为直三棱柱,ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=1,当$\frac{A{A}_{1}}{AC}$为多少时,二面角C-A1D-C1的余弦值为$\frac{\sqrt{2}}{4}$?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|y=$\sqrt{x-1}}$},A∩B=∅,则集合B不可能是(  )
A.{x|4x<2x+1}B.{(x,y)|y=x-1}C.{y=x-1}D.{y|y=log2(-x2+2x+1)}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),设点Q是曲线C上的一个动点,则它到直线l的距离的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C所对的边分别为a,b,c,sin$\frac{A}{2}$=$\frac{\sqrt{2-\sqrt{2}}}{2}$,且bsin(A-C)-csin(A-B)=a.
(1)求B与C的大小;
(2)若△ABC的外接圆半径为1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平行四边形ABCD中,BC=2AB,∠ABC=60°,四边形BEFD是矩形,且BE=BA,平面BEFD⊥平面ABCD.
(1)求证:AE⊥CF;
(2)求二面角A-EF-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{1}{3}$x3-3x,若方程f(x)=x2+m在(0,+∞)上两个解,则实数m的取值范围为-9<m<0.

查看答案和解析>>

同步练习册答案