精英家教网 > 高中数学 > 题目详情
16.在△ABC中,内角A,B,C所对的边分别为a,b,c,sin$\frac{A}{2}$=$\frac{\sqrt{2-\sqrt{2}}}{2}$,且bsin(A-C)-csin(A-B)=a.
(1)求B与C的大小;
(2)若△ABC的外接圆半径为1,求△ABC的面积.

分析 (1)利用正弦定理以及两角和与差的三角函数,化简求解三角形为等腰三角形,利用二倍角公式求出A,然后求解B、C的值.
(2)求出三角形边长,然后求解三角形的面积.

解答 解:(1)在△ABC中,bsin(A-C)-csin(A-B)=a,可得sinBsin(A-C)=sinCsin(A-B),
sinBsinAcosC-sinBcosAsinC=sinCsinAcosB-sinCcosAsinB.
可得sinBsinAcosC=sinCsinAcosB,
即:sinBcosC=cosBsinC,
可得sin(B-C)=0,
∴B=C,三角形是等腰三角形.
sin$\frac{A}{2}$=$\frac{\sqrt{2-\sqrt{2}}}{2}$,
可得sin2$\frac{A}{2}$=$\frac{2-\sqrt{2}}{4}$,
cosA=1-2sin2$\frac{A}{2}$=1-2×$\frac{2-\sqrt{2}}{4}$=$\frac{\sqrt{2}}{2}$,
∴A=$\frac{π}{4}$,
则B=C=$\frac{3π}{8}$.
(2)由(1)A=$\frac{π}{4}$,
可得$\frac{a}{sinA}=2R$,a=2×$\frac{\sqrt{2}}{2}$=$\sqrt{2}$,
sin$\frac{A}{2}$=$\frac{\sqrt{2-\sqrt{2}}}{2}$,
可得cos$\frac{A}{2}$=$\frac{\sqrt{2+\sqrt{2}}}{2}$,tan$\frac{A}{2}$=$\frac{\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}$,
A到BC边上的高为:$\frac{\frac{\sqrt{2}}{2}}{tan\frac{A}{2}}$=$\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}}$=$\frac{\sqrt{6}}{2}$.
三角形的面积为:$\frac{1}{2}×\sqrt{2}×\frac{\sqrt{6}}{2}$=$\frac{\sqrt{3}}{2}$.

点评 本题考查正弦定理以及两角和与差的三角函数,同角三角函数基本关系式的应用,三角形的面积的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,A,B是圆O上两点,延长AB至点C,满足AB=2BC=2,过C作直线CD与圆O相切于点D,∠ADB的平分线交AB于点E.
(I)求AE的长;
(II)若∠DBA=60°,求△BDE的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数m,n满足m<0,n>0,则下列说法一定正确的是(  )
A.log2(-m)>log2nB.$\frac{n}{m^3}<\frac{1}{n}$C.|m|<|n|D.$\root{3}{m}>\root{3}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2$\sqrt{2}$,∠ABC=90°(如图1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角为θ(如图2),M、N分别是BD和BC中点.
(1)若E为线段AN上任意一点,求证:ME⊥BD;
(2)若θ=$\frac{π}{3}$,求AB与平面BCD所成角的正弦值.
(3)P、Q分别为线段AB与DN上一点,使得$\frac{AP}{PB}$=$\frac{NQ}{QD}$=λ(λ∈R).令PQ与BD和AN所成的角分别为θ1和θ2.求sinθ1+sinθ2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x+$\frac{1}{x}$=4,求下列各式的值.
(1)x2+$\frac{1}{{x}^{2}}$;
(2)$\frac{{x}^{2}}{{x}^{4}+{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(a-$\frac{1}{2}$)(2x-1)+|lnx|.
(1)当a=1时,求f(x)的单调区间;
(2)若f(x)<2x2在(1,$\frac{5}{4}$)内恒成立,求满足条件的a的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=\frac{a-2lnx}{x^2}$在点(1,f(1))处的切线与直线y=-4x+1平行.
(1)求实数a的值及f(x)的极值;
(2)若对任意x1,x2$∈(0,\frac{1}{e}]$,有$|\frac{{f({x_1})-f({x_2})}}{x_1^2-x_2^2}|>\frac{k}{x_1^2•x_2^2}$,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知g(x)=|log2x|-|x-2|的三个零点为a,b,c且a<b<c,若f(x)=|log2x|,则f(a),f(b),f(c)的大小关系为(  )
A.f(b)<f(a)<f(c)B.f(b)<f(c)<f(a)C.f(a)<f(b)<f(c)D.f(c)<f(a)<f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式|2x-4|-|3x+9|<1.

查看答案和解析>>

同步练习册答案