精英家教网 > 高中数学 > 题目详情
7.已知g(x)=|log2x|-|x-2|的三个零点为a,b,c且a<b<c,若f(x)=|log2x|,则f(a),f(b),f(c)的大小关系为(  )
A.f(b)<f(a)<f(c)B.f(b)<f(c)<f(a)C.f(a)<f(b)<f(c)D.f(c)<f(a)<f(b)

分析 问题转化为f(x)=|log2x|和h(x)=|x-2|的交点,结合函数图象求出其大小即可.

解答 解:g(x)=|log2x|-|x-2|的三个零点为a,b,c,
即f(x)=|log2x|和h(x)=|x-2|的三个交点的横坐标为a,b,c,
如图示:

结合图象:f(b)<f(a)<f(c),
故选:A.

点评 本题考查了对数函数的性质,考查绝对值问题以及数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρsin(θ+$\frac{π}{6}}$)=1,圆C的参数方程为$\left\{\begin{array}{l}x=2+2cosθ\\ y=-\sqrt{3}+2sinθ\end{array}$(θ为参数).则直线l与圆C相交所得弦长为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C所对的边分别为a,b,c,sin$\frac{A}{2}$=$\frac{\sqrt{2-\sqrt{2}}}{2}$,且bsin(A-C)-csin(A-B)=a.
(1)求B与C的大小;
(2)若△ABC的外接圆半径为1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平行四边形ABCD中,BC=2AB,∠ABC=60°,四边形BEFD是矩形,且BE=BA,平面BEFD⊥平面ABCD.
(1)求证:AE⊥CF;
(2)求二面角A-EF-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在极坐标系中曲线C:ρ=2cosθ上的点到(1,π)距离的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知不等式|x+2|-|x|≤a的解集不是空集,则实数a的取值范围是[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\left\{\begin{array}{l}-{x^2}-2x+3(x≤1)\\ lnx(x>1)\end{array}$,若方程f(x)=kx-$\frac{1}{2}$恰有四个不相等的实数根,则实数k的取值范围是($\frac{1}{2}$,$\frac{\sqrt{e}}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{1}{3}$x3-3x,若方程f(x)=x2+m在(0,+∞)上两个解,则实数m的取值范围为-9<m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一个直角三角形的两条直角边边长分别为a,b,设计一个算法,求三角形的面积,并画出相应的程序框图.

查看答案和解析>>

同步练习册答案