精英家教网 > 高中数学 > 题目详情
16.函数f(x)=$\frac{1}{3}$x3-3x,若方程f(x)=x2+m在(0,+∞)上两个解,则实数m的取值范围为-9<m<0.

分析 由方程f(x)=x2+m在(0,+∞)上两个解转化为m=f(x)-x2=$\frac{1}{3}$x3-x2-3x在(0,+∞)上两个解,构造函数h(x)=$\frac{1}{3}$x3-x2-3x,求函数的导数,利用导数研究函数的极值和取值范围即可.

解答 解:∵f(x)=$\frac{1}{3}$x3-3x,若方程f(x)=x2+m在(0,+∞)上两个解,
∴等价为m=f(x)-x2=$\frac{1}{3}$x3-x2-3x在(0,+∞)上两个解,
设h(x)=$\frac{1}{3}$x3-x2-3x,
则h′(x)=x2-2x-3,
由h′(x)>0得x>3或x<-1(舍),
由h′(x)<0得-1<x<3,即0<x<3,
即当x=3时,函数取得极小值h(3)=9-9-9=-9,
∵h(0)=0,
∴要使m=h(x)在(0,+∞)上有两个解,
则-9<m<0;
故答案为:-9<m<0

点评 本题主要考查函数与方程的应用,根据条件转化为两个函数的交点个数问题,利用条件构造函数,求函数的导数,利用导数研究函数的极值和取值范围是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2$\sqrt{2}$,∠ABC=90°(如图1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角为θ(如图2),M、N分别是BD和BC中点.
(1)若E为线段AN上任意一点,求证:ME⊥BD;
(2)若θ=$\frac{π}{3}$,求AB与平面BCD所成角的正弦值.
(3)P、Q分别为线段AB与DN上一点,使得$\frac{AP}{PB}$=$\frac{NQ}{QD}$=λ(λ∈R).令PQ与BD和AN所成的角分别为θ1和θ2.求sinθ1+sinθ2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知g(x)=|log2x|-|x-2|的三个零点为a,b,c且a<b<c,若f(x)=|log2x|,则f(a),f(b),f(c)的大小关系为(  )
A.f(b)<f(a)<f(c)B.f(b)<f(c)<f(a)C.f(a)<f(b)<f(c)D.f(c)<f(a)<f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρsinθ+3=0,A、B两点极坐标分别为(1,π)、(1,0).
(1)求曲线C的参数方程;
(2)在曲线C上取一点P,求|AP|2+|BP|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平面直角坐标系xOy中,已知点M(4,2)和N(-3,6),则△OMN的面积为(  )
A.5$\sqrt{5}$B.15C.6$\sqrt{5}$D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.平面直角坐标系中,在伸缩变换φ:$\left\{\begin{array}{l}{x′=xcos\frac{π}{6}}\\{y′=ysin\frac{π}{6}}\end{array}\right.$的作用下,正弦曲线y=sinx变换为曲线(  )
A.y′=$\frac{\sqrt{3}}{2}$sin2x′B.y′=2sin2x′C.y′=$\frac{1}{2}$sin$\frac{2\sqrt{3}}{3}$x′D.y′=$\sqrt{3}$sin2x′

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式|2x-4|-|3x+9|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}$(θ为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{{\begin{array}{l}{x'=\frac{1}{3}x}\\{y'=\frac{1}{2}y}\end{array}}$得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.
(1)写出曲线 C与曲线C'的极坐标的方程;
(2)若过点A(2$\sqrt{2}$,$\frac{π}{4}}$)(极坐标)且倾斜角为$\frac{π}{3}$的直线l与曲线C交于M,N两点,试求|AM|•|AN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,⊙O内接四边形ABCD的两条对角线AC、BD交于点M,AP为⊙O的切线,∠BAP=∠BAC
(I)证明:△ABM≌△DBA;
(II )若BM=2,MD=3,求BC的长.

查看答案和解析>>

同步练习册答案