精英家教网 > 高中数学 > 题目详情
8.如图,⊙O内接四边形ABCD的两条对角线AC、BD交于点M,AP为⊙O的切线,∠BAP=∠BAC
(I)证明:△ABM≌△DBA;
(II )若BM=2,MD=3,求BC的长.

分析 (I)运用圆的弦切角定理和相似三角形的判定定理:对应角相等,则三角形相似,即可得证;
(II )由相似三角形的性质和圆的弦切角定理,可得AB=$\sqrt{10}$,∠BAP=∠BCA,再由等腰三角形的性质即可得到所求长.

解答 解:(I)证明:AP为⊙O的切线,
可得∠BAP=∠BDA,又BAP=∠BAC,
则∠BDA=∠BAC,
又∠BAC=∠BDA,
即∠BAM=∠BDA,
在△ABM和△DBA中,∠BAM=∠BDA,∠MBA=∠ABD,
则△ABM~△DBA;
(II )由△ABM~△DBA,可得
$\frac{AB}{DB}$=$\frac{BM}{BA}$,
由BM=2,MD=3,
可得AB2=DB•BM=5×2=10,
解得AB=$\sqrt{10}$,
AP为⊙O的切线,可得∠BAP=∠BCA,
又∠BAP=∠BAC,
即∠BCA=∠BAC,
则BC=AB=$\sqrt{10}$.

点评 本题考查圆的弦切角定理和相似三角形的判定和性质的运用,考查推理和运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.函数f(x)=$\frac{1}{3}$x3-3x,若方程f(x)=x2+m在(0,+∞)上两个解,则实数m的取值范围为-9<m<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一个直角三角形的两条直角边边长分别为a,b,设计一个算法,求三角形的面积,并画出相应的程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,在三棱柱ABC-A1B1C1中,O,D,E分别是棱AB,A1B1,AA1的中点,点F在棱AB上,且AF=$\frac{1}{4}$AB,AB=BC=CA=AA1,且侧棱AA1⊥平面ABC.
(1)求证:EF∥平面BCD;
(2)求二面角C-BC1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在底面为梯形的四棱锥P-ABCD中,平面PAB⊥底面ABCD,AD∥BC,AD⊥CD,AP=PB,AD=CD=2,BC=4.
(1)求证:AC⊥PB;
(2)若二面角B-PA-D的大小为120°,求AP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=alnx+$\frac{1}{2}$x2+(1-b)x.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为8x-2y-3=0,求a,b的值;
(Ⅱ)若b=a+1,x1,x2是f(x)的两个极值点,证明:f(x1)+f(x2)<8ln2-12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线$\left\{{\begin{array}{l}{x=2+2t}\\{y=-t}\end{array}}\right.$(t为参数)被曲线ρ=4cosθ所截的弦长为(  )
A.4B.$\frac{{8\sqrt{5}}}{5}$C.$\frac{{16\sqrt{5}}}{5}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系xOy中有不共线三点P(a1,b1),A(a2,b2),B(a3,b3).实数λ,μ满足λ+μ=λμ≠0,则以P为起点的向量$λ\overrightarrow{PA}$,$μ\overrightarrow{PB}$的终点连线一定过点(  )
A.(a2+a3-a1,b2+b3-b1B.(b2+b3-b1,a2+a3-a1
C.(a2+a3-2a1,b2+b3-2b1D.(b2+b3-2b1,a2+a3-2a1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3+bx2+cx+d的图象如图,则函数y=lnf′(x)的单调减区间为(  )
A.[0,3)B.[-2,3]C.(-∞,-2)D.[3,+∞)

查看答案和解析>>

同步练习册答案