精英家教网 > 高中数学 > 题目详情
7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,且经过点A(2,0).
(I)求椭圆的方程;
(Ⅱ)设直线l经过点(1,0)与椭圆交于B、C(不与A重合)两点,
(i)若△ABC的面积为$\frac{\sqrt{13}}{4}$,求直线l的方程;
(ii)若AB与AC的斜率之和为3,求直线l的方程.

分析 (I)由题意可得:$\frac{c}{a}=\frac{\sqrt{6}}{3}$,a=2,b2=a2-c2,联立解出即可得出.
(II)(i)设直线l的方程为:my=x-1,B(x1,y1),C(x2,y2).直线方程与椭圆方程联立可得:(m2+3)y2+2my-3=0,|MN|=$\sqrt{(1+{m}^{2})[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}$.点A到直线l的距离d.可得△ABC的面积=$\frac{\sqrt{13}}{4}$=$\frac{1}{2}$d|MN|,化简解出即可得出.
(ii)由于kAB+kAC=$\frac{{y}_{1}}{{x}_{1}-2}$+$\frac{{y}_{2}}{{x}_{2}-2}$=3,利用根与系数的关系化简解出即可得出.

解答 解:(I)由题意可得:$\frac{c}{a}=\frac{\sqrt{6}}{3}$,a=2,b2=a2-c2
联立解得a=2,c=$\frac{2\sqrt{6}}{3}$,b2=$\frac{4}{3}$.
∴椭圆的方程为:$\frac{{x}^{2}}{4}+\frac{3{y}^{2}}{4}$=1.
(II)(i)设直线l的方程为:my=x-1,B(x1,y1),C(x2,y2).
联立$\left\{\begin{array}{l}{my=x-1}\\{\frac{{x}^{2}}{4}+\frac{3{y}^{2}}{4}=1}\end{array}\right.$,化为:(m2+3)y2+2my-3=0,
△>0,∴y1+y2=$\frac{-2m}{3+{m}^{2}}$,y1y2=$\frac{-3}{3+{m}^{2}}$.
|MN|=$\sqrt{(1+{m}^{2})[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}$=$\frac{2\sqrt{(1+{m}^{2})(9+4{m}^{2})}}{3+{m}^{2}}$.
点A到直线l的距离d=$\frac{|2-1|}{\sqrt{1+{m}^{2}}}$=$\frac{1}{\sqrt{1+{m}^{2}}}$.
∴△ABC的面积=$\frac{\sqrt{13}}{4}$=$\frac{1}{2}$d|MN|=$\frac{\sqrt{9+4{m}^{2}}}{3+{m}^{2}}$,化为:13m4+14m2-27=0,解得m2=1,∴m=±1.
∴直线l的方程为:x±y-1=0.
(ii)∵kAB+kAC=$\frac{{y}_{1}}{{x}_{1}-2}$+$\frac{{y}_{2}}{{x}_{2}-2}$=3,
∴y1(my2-1)+y2(my1-1)=3(my1-1)(my2-1),
化为:(3m2-2m)y1y2+(1-3m)(y1+y2)+3=0.
∴$\frac{-3(3{m}^{2}-2m)}{3+{m}^{2}}$-$\frac{2m(1-3m)}{3+{m}^{2}}$+3=0,
化为:4m+9=0,
解得m=-$\frac{9}{4}$.
∴直线l的方程为:4x+9y-4=0.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、三角形面积计算公式、点到直线的距离公式、斜率计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,☉O1,☉O2交于两点P,Q,直线AB过点P,与⊙O1,⊙O2分别交于点A,B,直线CD过点Q,与⊙O1,⊙O2分别交于点C,D.求证:AC∥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.语文老师要从10篇课文中随机抽3篇让学生背诵,某学生只能背诵其中的6篇,求:
( I)抽到他能背诵的课文的数量的分布列;
( II)他能及格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆M:x2+(y-4)2=4,点P是直线l:x-2y=0上的一动点,过点P作圆M的切线PA,PB,切点为A,B.
(1)当切线PA的长度为$2\sqrt{3}$时,求点P的坐标;
(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.
(3)求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线l1的倾斜角的余弦为-$\frac{1}{2}$,直线l2的倾斜角的正切值为$\frac{1}{\sqrt{3}}$,则l1与l2的关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图:四边形ABCD为等腰梯形,且AD∥BC,E为BC中点,AB=AD=BE.现沿DE将△CDE折起成四棱锥C′-ABED,点O为ED的中点.
(1)在棱AC′上是否存在一点M,使得OM⊥平面C′BE?并证明你的结论;
(2)若AB=2,求四棱锥C′-ABED的体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.半球内有一内接正四棱锥,该正四棱锥的侧面积是4$\sqrt{3}$,则该正四棱锥的体积为$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=x3+ax2+2x在[0,2]上既有极大值又有极小值,则实数a的取值范围为(  )
A.(-6,0)B.$({-6,-\sqrt{6}})$C.(-3.5,0)D.(-3.5,$\sqrt{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PA⊥底面ABCD,M、N分别为PD、AC的中点.
(1)证明:平面PAC⊥平面MND;
(2)若AB=2AP,求二面角A-MN-D的正弦值.

查看答案和解析>>

同步练习册答案