分析 (1)推导出PD⊥平面ABC,且D∈AB,CD⊥PD,CD⊥AB,从而CD⊥平面PAB,由此能证明PA⊥CD.
(2)以D为原点,DC为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,利用向量法能求出二面角C-PB-A的余弦值.
解答
证明:(1)∵三棱锥P-ABC中,侧面PAB与底面ABC垂直,且PD垂直底面,
侧面PAB∩底面ABCD=AB,
∴PD⊥平面ABC,且D∈AB,
∵CD?平面ABC,∴CD⊥PD,
∵PD=BD,△ACB是直角三角形,AD=$\frac{1}{3}$DB;BC=$\sqrt{3}$AC,
∴设PD=BD=3,得AD=1,AC=2,BC=2$\sqrt{3}$,CD=$\sqrt{3}$,
∴CD⊥AB,又PD∩AB=D,∴CD⊥平面PAB,
∵PA?平面PAB,∴PA⊥CD.
解:(2)以D为原点,DC为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,
P(0,0,3),C($\sqrt{3}$,0,0),B(0,3,0),
$\overrightarrow{PC}$=($\sqrt{3},0,-3$),$\overrightarrow{PB}$=(0,3,-3),
设平面PBC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PB}=3y-3z=0}\\{\overrightarrow{n}•\overrightarrow{PC}=\sqrt{3}x-3z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=($\sqrt{3},1,1$),
平面PBA的法向量$\overrightarrow{m}$=(1,0,0),
设二面角C-PB-A的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{5}}$=$\frac{\sqrt{15}}{5}$.
∴二面角C-PB-A的余弦值为$\frac{\sqrt{15}}{5}$.
点评 本题考查线线垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com