精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=x3-3ax+b(a>0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间.

分析 (Ⅰ)求导函数,利用曲线y=f(x)在点(2,f(x))处在直线y=8相切,建立方程组,即可求得a,b的值;
(Ⅱ)f′(x)=3(x2-4)=3(x+2)(x-2),令f′(x)>0,可得函数的单调增区间;令f′(x)<0,可得函数的单调减区间.

解答 解:(Ⅰ)求导函数,可得f′(x)=3x2-3a
∵曲线y=f(x)在点(2,f(x))处在直线y=8相切
∴$\left\{\begin{array}{l}{f′(2)=3(4-a)=0}\\{f(2)=8-6a+b=8}\end{array}\right.$,
∴a=4,b=24
(Ⅱ)f′(x)=3(x2-4)=3(x+2)(x-2)
令f′(x)>0,可得x<-2或x>2;
令f′(x)<0,可得-2<x<2
∴函数的单调增区间为(-∞,-2),(2,+∞),单调减区间为(-2,2).

点评 本题考查导数知识的运用,考查函数的单调性,正确求导是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,∠BAC的平分线交BC于点D,交△ABC的外接圆于点E,延长AC交△DCE的外接圆于点F,DF=$\sqrt{14}$
(Ⅰ)求BD;
(Ⅱ)若∠AEF=90°,AD=3,求DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=|x-1|+|x-a|,x∈R.
(1)求证:当a=-2时,不等式lnf(x)>1成立;
(2)关于x的不等式f(x)≥a在R上恒成立,求实数a最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-12x.
(1)求f′(1)的值;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,设锐角△ABC的外接圆ω的圆心为O,经过A,O,C三点的圆ω1的圆心为K,且与边AB和BC分别相交于点M和N,现知点L与K关于直线MN对称,证明:BL⊥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,两个以O为圆心的同心圆,AB切大圆于B,AC切小圆于C,交大圆于D,E,AB=12,AO=15,AD=8,求两圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数a满足x+lgx=2,实数b满足x+10x=2,函数f(x)=$\left\{{\begin{array}{l}{ln(x+1)+\frac{a+b}{2},x≤0}\\{{x^2}-2,x>0}\end{array}}$,则关于x的方程f(x)=x解的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知tanα=2,求
(1)$\frac{2sin(α-π)3cos(-α)}{4sin(\frac{π}{2}+α)-9cos(α-\frac{3π}{2})}$;
(2)4sin2α-3sinαcosα-5cos2α;
(3)$\frac{1+sin2α}{1+sin2α+cos2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知sin(α-$\frac{π}{3}$)=$\frac{15}{17}$,α∈($\frac{π}{2}$,$\frac{5}{6}$π),则sinα的值为(  )
A.$\frac{8}{17}$B.$\frac{15\sqrt{3}+8}{34}$C.$\frac{15-8\sqrt{3}}{34}$D.$\frac{15+8\sqrt{3}}{34}$

查看答案和解析>>

同步练习册答案