精英家教网 > 高中数学 > 题目详情
2.已知sin(α-$\frac{π}{3}$)=$\frac{15}{17}$,α∈($\frac{π}{2}$,$\frac{5}{6}$π),则sinα的值为(  )
A.$\frac{8}{17}$B.$\frac{15\sqrt{3}+8}{34}$C.$\frac{15-8\sqrt{3}}{34}$D.$\frac{15+8\sqrt{3}}{34}$

分析 由已知利用同角三角函数基本关系式可求cos(α-$\frac{π}{3}$),由α=(α-$\frac{π}{3}$)+$\frac{π}{3}$,利用两角和的正弦函数公式即可计算得解.

解答 解:∵sin(α-$\frac{π}{3}$)=$\frac{15}{17}$,α∈($\frac{π}{2}$,$\frac{5}{6}$π),
∴α-$\frac{π}{3}$∈($\frac{π}{6}$,$\frac{π}{2}$),
∴cos(α-$\frac{π}{3}$)=$\sqrt{1-si{n}^{2}(α-\frac{π}{3})}$=$\frac{8}{17}$,
∴sinα=sin[(α-$\frac{π}{3}$)+$\frac{π}{3}$]=sin(α-$\frac{π}{3}$)cos$\frac{π}{3}$+cos(α-$\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{15}{17}$×$\frac{1}{2}$+$\frac{8}{17}$×$\frac{\sqrt{3}}{2}$=$\frac{15\sqrt{3}+8}{34}$.
故选:B.

点评 本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=x3-3ax+b(a>0).
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=ex-e2x,则f(x)的最小值为-e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{{2}^{x}-1}$+a是奇函数.
(1)求a的值和函数f(x)的定义域;
(2)用单调性的定义证明:函数f(x)在(0,+∞)上是减函数;
(3)解不等式f(-m2+2m-1)+f(m2+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解方程组:$\left\{\begin{array}{l}{({x}^{2}+1)({y}^{2}+1)=10}\\{(x+y)(xy-1)=3}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=loga$\frac{1-x}{x+1}$(a>0,a≠1).
(I)求函数的定义域;
(Ⅱ)判断函数的奇偶性,并说明理由;
(Ⅲ)解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax3+x2-ax(a∈R且a≠0).
(1)若函数f(x)在(-∞,-1)和($\frac{1}{3},-∞$)上是增函数,在(-1,$\frac{1}{3}$)上是减函数,求a的值;
(2)讨论函数g(x)=$\frac{f(x)}{x}-\frac{3}{a}$lnx的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,AH平分∠BAC,交△ABC的外接圆O于点F,过点F作DE∥BC.分别交AB,AC的延长线于D,E两点.
(1)求证:DE是⊙O的切线;
(2)若FH=6,HA=2,求BF的长;
(3)若∠BAC=120°,在(2)的条件下.求$\widehat{BFC}$长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设y=x3-$\frac{9}{2}$x2+6x.
(1)求在x=1处的切线方程.
(2)求函数的单调区间.

查看答案和解析>>

同步练习册答案