分析 连接CE,DF,由圆的割线定理可得,PC•PD=PE•PF,再由公共角,可得△CPE∽△FPD,即有对应角相等,由对角互补,即可得到C,D,E,F四点共圆.
解答
证明:连接CE,DF,
由圆的割线定理可得,
PA•PB=PC•PD,PA•PB=PE•PF,
即有PC•PD=PE•PF,
即$\frac{PC}{PE}$=$\frac{PF}{PD}$,
又∠CPE=∠FPD,
可得△CPE∽△FPD,
即有∠PCE=∠PFD,
即∠DCE+∠PFD=180°,
则C,D,E,F四点共圆.
点评 本题考查四点共圆的证法,注意运用圆的割线定理和相似三角形的判定和性质,考查推理能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | c>b>a | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20° | B. | 70° | C. | 110° | D. | 160° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com