【题目】如图,
是圆
的直径,点
是圆
上异于
、
的点,直线度
平面
,
、
分别是
、
的中点.
![]()
(Ⅰ)设平面
与平面
的交线为
,求直线
与平面
所成角的余弦值;
(Ⅱ)设(Ⅰ)中的直线
与圆
的另一个交点为点
,且满足
,
,当二面角
的余弦值为
时,求
的值.
【答案】(1)见解析(2)![]()
【解析】试题分析:(1)求线面角,一般利用空间向量进行求解,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据线面角与向量夹角之间互余关系求解,(2)研究二面角,一般利用空间向量进行列式求解参数,先根据条件建立空间直角坐标系,设立各点坐标,利用方程组解出各面法向量,利用向量数量积求法向量夹角,最后根据二面角与向量夹角之间关系列式
试题解析:(Ⅰ)∵
平面
,∴
,
又∵
,∴
平面
,
∵
,
分别是
,
的中点,所以
,
又∵
平面
,
平面
,
∴
面
,
又∵
平面
,平面
平面
,
∴直线
直线
,
∴
,
∴直线
与平面
所成角
为直角,
.
(Ⅱ)设
,则
,如图建立平面直角坐标系.
面
的一个法向量为
,可求出面
的一个法向量
,
可求出
.
![]()
科目:高中数学 来源: 题型:
【题目】若要得到函数y=sin(2x﹣
)的图象,可以把函数y=sin2x的图象( )
A.向右平移
个单位
B.向左平移
个单位
C.向右平移
个单位
D.向左平移
个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的右焦点为
,离心率为
,设直线
的斜率是
,且
与椭圆
交于
,
两点.
(Ⅰ)求椭圆的标准方程.
(Ⅱ)若直线
在
轴上的截距是
,求实数
的取值范围.
(Ⅲ)以
为底作等腰三角形,顶点为
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点
在直线
上,且抛物线
截直线
所得的弦
的长为
.
(Ⅰ)求抛物线
的方程和
的值.
(Ⅱ)以弦
为底边,以
轴上点
为顶点的三角形
面积为
,求点
坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公比为负值的等比数列{an}中,a1a5=4,a4=﹣1.
(1)求数列{an}的通项公式;
(2)设bn=
+
+…+
,求数列{an+bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记Sn为正项等比数列{an}的前n项和,若
﹣7
﹣8=0,且正整数m,n满足a1ama2n=2
,则
+
的最小值是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知圆
的极坐标方程为
,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,取相同单位长度(其中
,
),若倾斜角为
且经过坐标原点的直线
与圆
相交于点
(
点不是原点).
(1)求点
的极坐标;
(2)设直线
过线段
的中点
,且直线
交圆
于
两点,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com