精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点为,离心率为,设直线的斜率是,且与椭圆交于 两点.

Ⅰ)求椭圆的标准方程.

Ⅱ)若直线轴上的截距是,求实数的取值范围.

Ⅲ)以为底作等腰三角形,顶点为,求的面积.

【答案】(Ⅰ) (Ⅱ) (Ⅲ) .

【解析】试题分析:

()由题意求得 ,则椭圆的标准方程为

()联立直线方程与椭圆方程,结合,可得实数的取值范围是:

()利用弦长公式可得

利用两点之间距离公式有

则三角形的面积

试题解析:

(Ⅰ)由已知得

解得: ,又

∴椭圆的标准方程为

(Ⅱ)若直线轴上的截距是

则可设直线的方程为

代入得:

,解得:

故实数的取值范围是:

(Ⅲ)设的坐标分别为

的中点为

因为是等腰的底边,

所以,∴

,解得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列为公差不为的等差数列, 为前项和, 的等差中项为,且.令数列的前项和为

1)求

2)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为 ,绘制出频率分布直方图.

(1)求的值,并计算完成年度任务的人数;

(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;

(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是等差数列,其前项和为 是等比数列,且

(1)求数列的通项公式;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x= 时,f(x)取得最大值3;当x= 时,f(x)取得最小值﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线轴交于两点.

Ⅰ)若点分别是双曲线的虚轴、实轴的一个端点,试在平面上找两点,使得双曲线上任意一点到这两点距离差的绝对值是定值.

Ⅱ)若以原点为圆心的圆截直线所得弦长是,求圆的方程以及这条弦的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 =2.718………),

(I) 当时,求函数的单调区间;

(II)当时,不等式对任意恒成立,

求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是圆的直径,点是圆上异于的点,直线度平面 分别是的中点.

(Ⅰ)设平面与平面的交线为,求直线与平面所成角的余弦值;

(Ⅱ)设(Ⅰ)中的直线与圆的另一个交点为点,且满足 ,当二面角的余弦值为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,O为坐标原点,A、B、C三点满足 = +
(1)求证:A、B、C三点共线;
(2)已知A(1,cosx)、B(1+sinx,cosx),x∈[0, ],f(x)= +(2m+ )| |+m2的最小值为5,求实数m的值.

查看答案和解析>>

同步练习册答案