【题目】已知椭圆
的右焦点为
,离心率为
,设直线
的斜率是
,且
与椭圆
交于
,
两点.
(Ⅰ)求椭圆的标准方程.
(Ⅱ)若直线
在
轴上的截距是
,求实数
的取值范围.
(Ⅲ)以
为底作等腰三角形,顶点为
,求
的面积.
科目:高中数学 来源: 题型:
【题目】已知数列
为公差不为
的等差数列,
为前
项和,
和
的等差中项为
,且
.令
数列
的前
项和为
.
(1)求
及
;
(2)是否存在正整数
成等比数列?若存在,求出所有的
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间
(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为
,
,
,
,
,绘制出频率分布直方图.
![]()
(1)求
的值,并计算完成年度任务的人数;
(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;
(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π),在同一周期内,当x=
时,f(x)取得最大值3;当x=
时,f(x)取得最小值﹣3.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与
、
轴交于
、
两点.
(Ⅰ)若点
、
分别是双曲线
的虚轴、实轴的一个端点,试在平面上找两点
、
,使得双曲线
上任意一点到
、
这两点距离差的绝对值是定值.
(Ⅱ)若以原点
为圆心的圆
截直线
所得弦长是
,求圆
的方程以及这条弦的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是圆
的直径,点
是圆
上异于
、
的点,直线度
平面
,
、
分别是
、
的中点.
![]()
(Ⅰ)设平面
与平面
的交线为
,求直线
与平面
所成角的余弦值;
(Ⅱ)设(Ⅰ)中的直线
与圆
的另一个交点为点
,且满足
,
,当二面角
的余弦值为
时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A、B、C三点满足
=
+
.
(1)求证:A、B、C三点共线;
(2)已知A(1,cosx)、B(1+sinx,cosx),x∈[0,
],f(x)=
+(2m+
)|
|+m2的最小值为5,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com