【题目】已知直线与、轴交于、两点.
(Ⅰ)若点、分别是双曲线的虚轴、实轴的一个端点,试在平面上找两点、,使得双曲线上任意一点到、这两点距离差的绝对值是定值.
(Ⅱ)若以原点为圆心的圆截直线所得弦长是,求圆的方程以及这条弦的中点.
科目:高中数学 来源: 题型:
【题目】现有一枚质地均匀的骰子,连续投掷两次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是7的结果有多少种?
(3)向上的点数之和是7的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,离心率为,设直线的斜率是,且与椭圆交于, 两点.
(Ⅰ)求椭圆的标准方程.
(Ⅱ)若直线在轴上的截距是,求实数的取值范围.
(Ⅲ)以为底作等腰三角形,顶点为,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面给出了四个类比推理:
①为实数,若则;类比推出: 为复数,若则.
② 若数列是等差数列, ,则数列也是等差数列;类比推出:若数列是各项都为正数的等比数列, ,则数列也是等比数列.
③ 若则; 类比推出:若为三个向量,则.
④ 若圆的半径为,则圆的面积为;类比推出:若椭圆的长半轴长为,短半轴长为,则椭圆的面积为.上述四个推理中,结论正确的是( )
A. ① ② B. ② ③ C. ① ④ D. ② ④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点在直线上,且抛物线截直线所得的弦的长为.
(Ⅰ)求抛物线的方程和的值.
(Ⅱ)以弦为底边,以轴上点为顶点的三角形面积为,求点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com