精英家教网 > 高中数学 > 题目详情
9.已知点A(-1,-1),若点P(a,b)为第一象限内的点,且满足|AP|=2$\sqrt{2}$,则ab的最大值为1.

分析 |AP|=2$\sqrt{2}$,可得(a+1)2+(b+1)2=8,令$\left\{\begin{array}{l}{a=-1+2\sqrt{2}cosθ}\\{b=-1+2\sqrt{2}sinθ}\end{array}\right.$,θ∈(arcsin$\frac{\sqrt{2}}{4}$,$\frac{π}{2}$-arcsin$\frac{\sqrt{2}}{4}$).则ab=1-2$\sqrt{2}$(sinθ+cosθ)+8sinθcosθ,令sinθ+cosθ=t=$\sqrt{2}$sin(θ+$\frac{π}{4}$),sinθcosθ=$\frac{{t}^{2}-1}{2}$.再利用二次函数的单调性即可得出.

解答 解:∵|AP|=2$\sqrt{2}$,
∴$\sqrt{(a+1)^{2}+(b+1)^{2}}$=2$\sqrt{2}$,(a,b>0).
化为(a+1)2+(b+1)2=8,
令$\left\{\begin{array}{l}{a=-1+2\sqrt{2}cosθ}\\{b=-1+2\sqrt{2}sinθ}\end{array}\right.$,θ∈(arcsin$\frac{\sqrt{2}}{4}$,$\frac{π}{2}$-arcsin$\frac{\sqrt{2}}{4}$).
则ab=1-2$\sqrt{2}$(sinθ+cosθ)+8sinθcosθ,
令sinθ+cosθ=t=$\sqrt{2}$sin(θ+$\frac{π}{4}$),sinθcosθ=$\frac{{t}^{2}-1}{2}$,
∴ab=1-2$\sqrt{2}$t+4(t2-1)
=4(t-$\frac{\sqrt{2}}{4}$)2-$\frac{7}{2}$≤1,当且仅当θ=$\frac{π}{4}$时取等号.
故答案为:1.

点评 本题考查了两点之间的距离公式、三角函数代换与三角函数的单调性值域、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在边长为2正方形ABCD中,E、F分别是BC、CD的中点,则$\overrightarrow{BF}$•$\overrightarrow{DE}$=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列不等式的解集:
(1)2x2+x-3<0;
(2)x(9-x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.四棱锥P-ABCD的四条侧棱长相等,底面ABCD为正方形,M为PB的中点,求证:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求异面直线PD与CM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A{x|-1<x<2},B?{x|-3<x<1},则A∩B=(  )
A.(-3,2)B.(1,2)C.(-1,1)D.(-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和Sn满足Sn=$\frac{3}{2}({{a_n}-1})$.
(1)求证数列{an}是等比数列并求通项公式an
(2)设bn=2n-1,cn=an•bn,Tn为{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,已知ABC-A1B1C1是正三棱柱,它的底面边长和侧棱长都是2.
(Ⅰ)求异面直线A1C与B1C1所成角的余弦值大小;
(Ⅱ)求三棱锥C-ABC1的体积${V_{C-AB{C_1}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点P是圆O:x2+y2=1上任意一点,过点P作PQ⊥y轴于点Q,延长QP到点M,使$\overrightarrow{QP}=\overrightarrow{PM}$.
(1)求点M的轨迹的方程;
(2)过点C(m,0)作圆O的切线l,交(1)中曲线E于A,B两点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线m∥平面α,直线n在平面α内,则直线m与直线n的位置关系为相交或异面.

查看答案和解析>>

同步练习册答案