分析 (1)设点M(x,y),由$\overrightarrow{QP}=\overrightarrow{PM}$,可得P为QM的中点,又有PQ⊥y轴,可得P$(\frac{x}{2},y)$,把点P代入圆:x2+y2=1即可得出.
(2)由题意可知直线l不与y轴垂直,故可设l:x=ty+m,t∈R,A(x1,y1),B(x2,y2),由l与圆O:x2+y2=1相切,可得$\frac{|m|}{\sqrt{{t}^{2}+1}}$=1,即m2=t2+1,直线方程与椭圆方程联立化为:(t2+4)y2+2mty+m2-4=0,利用根与系数的关系可得:$|{AB}|=\sqrt{{{({{x_1}-{x_2}})}^2}+{{({{y_1}-{y_2}})}^2}}$=$\sqrt{({{t^2}+1})}\sqrt{{{({{y_1}+{y_2}})}^2}-4{y_1}{y_2}}$,把根与系数的关系代入化简即可得出S△OAB,再利用基本不等式的性质即可得出.
解答 解:(1)设点M(x,y),∵$\overrightarrow{QP}=\overrightarrow{PM}$,∴P为QM的中点,又有PQ⊥y轴,
∴P$(\frac{x}{2},y)$,∴点P是圆:x2+y2=1上的点,∴有$(\frac{x}{2})^{2}+{y}^{2}$=1,
即点M的轨迹E的方程为:$\frac{{x}^{2}}{4}$+y2=1.
(2)由题意可知直线l不与y轴垂直,故可设l:x=ty+m,t∈R,A(x1,y1),B(x2,y2),
∵l与圆O:x2+y2=1相切,∴$\frac{|m|}{\sqrt{{t}^{2}+1}}$=1,即m2=t2+1,①
由$\left\{\begin{array}{l}{{x}^{2}+4{y}^{2}=4}\\{x=ty+m}\end{array}\right.$消x并整理得:(t2+4)y2+2mty+m2-4=0,
其中△=4m2t2-4(t2+4)(m2-4)=48>0,
又有y1+y2=$\frac{-2mt}{{t}^{2}+4}$,y1•y2=$\frac{{m}^{2}-4}{{t}^{2}+4}$.②
∴$|{AB}|=\sqrt{{{({{x_1}-{x_2}})}^2}+{{({{y_1}-{y_2}})}^2}}$=$\sqrt{({{t^2}+1})}\sqrt{{{({{y_1}+{y_2}})}^2}-4{y_1}{y_2}}$,
将①②代入上式得|AB|=$\sqrt{{t}^{2}+1}$$\sqrt{\frac{4{m}^{2}{t}^{2}}{({t}^{2}+4)^{2}}-\frac{4({m}^{2}-4)}{{t}^{2}+4}}$=$\frac{4\sqrt{3}|m|}{{m}^{2}+3}$,|m|≥1.
∴${S_{△AOB}}=\frac{1}{2}|{AB}|•1=\frac{1}{2}•\frac{{4\sqrt{3}|m|}}{{{m^2}+3}}=\frac{{2\sqrt{3}}}{{|m|+\frac{3}{|m|}}}≤\frac{{2\sqrt{3}}}{{2\sqrt{3}}}=1$,
当且仅当$|m|=\frac{3}{|m|}$即$m=±\sqrt{3}$时,等号成立.
∴(S△AOB)max=1.
点评 本题考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题、直线与圆相切的性质、一元二次方程的根与系数的关系、两点之间的距离公式、点到直线的距离公式、三角形面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | x+y-5=0 | B. | x+y-1=0 | C. | x-y-5=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①④ | C. | ②③ | D. | ③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{125}{3}π$ | B. | $\frac{250}{3}$π | C. | $\frac{500}{3}π$ | D. | $\frac{550}{3}π$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com