精英家教网 > 高中数学 > 题目详情
3.设向量$\overrightarrow{m}$=(sinωx,cosωx),$\overrightarrow{n}$=(cosφ,sinφ),(x∈R,|φ|<$\frac{π}{2}$,ω>0),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$的图象在y轴右侧的第一个最高点(即函数取得最大值的一个点)为P($\frac{π}{6},1$),在原点右侧与x轴的第一个交点为Q($\frac{5π}{12},0$)
(1)求函数f(x)的解析式;
(2)在△ABC中,角A,B,C的对应边分别是a,b,c若f(C)=-1,$\overrightarrow{CA}•\overrightarrow{CB}=-\frac{3}{2}$,且a+b=2$\sqrt{3}$,求边长c.

分析 (1)利用平面向量数量积的运算,两角和的正弦函数公式化简可得f(x)=sin(ωx+φ),利用周期公式可求ω,将点P($\frac{π}{6},1$)代入y=sin(2x+φ),结合范围|φ|<$\frac{π}{2}$,可求φ,即可得解函数f(x)的解析式.
(2)由题意可得sin(2C+$\frac{π}{6}$)=-1,结合范围0<C<π,可得C=$\frac{2π}{3}$.由$\overrightarrow{CA}•\overrightarrow{CB}=-\frac{3}{2}$,解得ab=3,利用余弦定理即可解得c的值.

解答 (本小题满分12分)
解:f(x)=$\overrightarrow{m}•\overrightarrow{n}$=sinωxcosφ+cosωxsinφ=sin(ωx+φ),----------(2分)
由题意,得$\frac{T}{4}$=$\frac{5π}{12}$-$\frac{π}{6}$,可得:T=π,所以ω=2.----------------(3分)
将点P($\frac{π}{6},1$),代入y=sin(2x+φ)  得sin(2×$\frac{π}{6}$+φ)=1,
所以φ=2kπ+$\frac{π}{6}$,(k∈Z),
又因为|φ|<$\frac{π}{2}$,
所以φ=$\frac{π}{6}$,------------(5分)
即函数f(x)的解析式为f(x)=sin(2x+$\frac{π}{6}$),(x∈R)--------------(6分)
(2)由f(C)=-1,即sin(2C+$\frac{π}{6}$)=-1,
  又因为0<C<π,可得:C=$\frac{2π}{3}$.------(8分)
由$\overrightarrow{CA}•\overrightarrow{CB}=-\frac{3}{2}$,知abcosC=-$\frac{3}{2}$,
所以,ab=3.----------------(10分)
由余弦定理知c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC=(2$\sqrt{3}$)2-2×3-2×3×(-$\frac{1}{2}$)=9,
所以c=3或-3(舍去),故c=3.--------------------(12分)

点评 本题主要考查了平面向量数量积的运算,两角和的正弦函数公式,周期公式,余弦定理的综合应用,考查了转化思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若a=b=1,c=$\sqrt{3}$,则角C(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和Sn满足Sn=$\frac{3}{2}({{a_n}-1})$.
(1)求证数列{an}是等比数列并求通项公式an
(2)设bn=2n-1,cn=an•bn,Tn为{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知曲线y2=ax与其关于点(1,1)对称的曲线有两个不同的交点A和B,如果过这两个交点的直线的倾斜角是45°,则实数a的值是(  )
A.1B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知点P是圆O:x2+y2=1上任意一点,过点P作PQ⊥y轴于点Q,延长QP到点M,使$\overrightarrow{QP}=\overrightarrow{PM}$.
(1)求点M的轨迹的方程;
(2)过点C(m,0)作圆O的切线l,交(1)中曲线E于A,B两点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知A={x|x<-2},B={x|x<m},若B是A的子集,则实数m的取值范围为m≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某三棱锥的三视图如图,该三棱锥的表面积是(  )
A.2B.$\sqrt{2}$+1C.$\sqrt{2}+\sqrt{3}$+3D.$\sqrt{3}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知tanα=2,其中α是第三象限的角,则sin(π+α)等于(  )
A.-$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.-$\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.将函数f(x)=2sin(2x-$\frac{π}{6}$)的图象向左平移$\frac{π}{12}$个单位,再将所有点的横坐标伸长到原来的2倍,得到函数y=g(x)的图象,则函数y=g(x)的图象与直线x=0,x=2π,x轴围成的图形面积为(  )
A.0B.4C.8D.以上都不对

查看答案和解析>>

同步练习册答案