【题目】已知函数
.
(1)若
,试判断
的符号;
(2)讨论
的零点的个数.
【答案】(1)答案不唯一,具体见解析(2)当
或
时,
有
个零点;当
且
时,
有
个零点
【解析】
(1)首先计算得到
,设
,利用二次求导,判断函数的单调性,
和
比较大小;
(2)首先求函数的导数
,讨论
,
两种情况讨论函数的单调性,判断函数的零点个数,当
时,
,
设
,再次求函数的导数,判断函数的单调性和最小值,讨论求函数的零点个数.
解:(1)
.
设
,则
.
设
,则
,
∴当
时,
;当
时,
.
∴当
时,
.故
,从而
.
∴
在
上单调递增.
∴当
时,
,从而
;
当
时,
,从而
;
当
时,
,从而
.
(2)
的定义域为
,
.
∴当
时,
,故
在
上单调递增,
又
,∴
有
个零点.
当
时,令
,得
;令
,得
.
∴
在上
上单调递减,在
上单调递增.
∴
.
设
,则
.
∴当
时,
;当
时,
.∴
.
∴当
时,
,即
,
又当
时,
;当
时,
;故
有
个零点.
当
时,
,故
有
个零点.
当
时,
,即
,
又当
时,
;由(1)知
,故
有
个零点.
当
或
时,
有
个零点;当
且
时,
有
个零点.
科目:高中数学 来源: 题型:
【题目】某中学组织高二年级开展对某品牌西瓜市场调研活动.两名同学经过了解得知此品牌西瓜,不仅便宜而且口味还不错,并且每日的销售量y(单位:千克)与销售价格x(元/千克)满足关系式:
,其中
,a为常数.已知销售价格为5元/千克时,每日可售出此品牌西瓜11千克.若此品牌西瓜的成本为3元/千克,试确定销售价格x的值,使该商场日销售此品牌西瓜所获得的利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100名学生的数学成绩,发现都在
内现将这100名学生的成绩按照
,
,
,
,
,
,
分组后,得到的频率分布直方图如图所示,则下列说法正确的是
![]()
![]()
A. 频率分布直方图中a的值为![]()
B. 样本数据低于130分的频率为![]()
C. 总体的中位数
保留1位小数
估计为
分
D. 总体分布在
的频数一定与总体分布在
的频数相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】气象意义上,从春季进入夏季的标志为:“连续5天的日平均温度不低于22℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):
①甲地:5个数据的中位数为24,众数为22;
②乙地:5个数据的中位数为27,总体均值为24;
③丙地:5个数据的中有一个数据是32,总体均值为26,总体方差为10.8;
则肯定进入夏季的地区的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数
(单位:百人)对年产能
(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
![]()
(1)根据散点图判断:
与
哪一个适宜作为年产能
关于投入的人力
的回归方程类型?并说明理由?
(2)根据(1)的判断结果及相关的计算数据,建立
关于
的回归方程;
(3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?
附注:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,(说明:
的导函数为
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,该作中有题为“李白沽酒”“李白街上走,提壶去买酒。遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?”,如图为该问题的程序框图,若输出的
值为0,则开始输入的
值为( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系
中,直线
经过点
,倾斜角为
,以原点为极点,
轴的非负半轴为极轴建立极坐标系,曲线
的极坐标方程为曲线
.
(Ⅰ)写出直线
的参数方程及曲线
的普通方程;
(Ⅱ)求直线
和曲线
的两个交点到点
的距离的和与积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com