已知抛物线
上的任意一点
到该抛物线焦点的距离比该点到
轴的距离多1.![]()
(1)求
的值;
(2)如图所示,过定点
(2,0)且互相垂直的两条直线
、
分别与该抛物线分别交于
、
、
、
四点.
(i)求四边形
面积的最小值;
(ii)设线段
、
的中点分别为
、
两点,试问:直线
是否过定点?若是,求出定点坐标;若不是,请说明理由.
(1)
(2)(i)四边形
面积的最小值是48(ii)
解析试题分析:(1)直接利用抛物线的定义
(2)(i)
S四边形ABCD,
,利用弦长
公式,以及基本不等式,二次函数在闭区间上的最值问题
的解法求解
(ii)恒过定点问题的常规解法
试题解析:
(1)由已知
∴![]()
(2)(i)由题意可设直线
的方程为
(
),代入
得![]()
设
则
,![]()
∴![]()
6分
同理可得
7分
S四边形ABCD![]()
8分
设
则
∴S四边形ABCD![]()
∵函数
在
上是增函数
∴S四边形ABCD
,当且仅当即
即
时取等号
∴四边形
面积的最小值是48. 9分
(ii)由①得
∴
∴![]()
∴
, 11分
同理得
12分
∴直线的方程可表示为![]()
![]()
即![]()
当
时得![]()
∴直线
过定点(4,0). 14分
注:第(2)中的第(i)问:
S四边形ABCD![]()
![]()
(当且仅当
时取等号)也可.
考点:本题主要考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系,弦长公式,基本不等式,二次函数在闭区间上的最值问题等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
科目:高中数学 来源: 题型:解答题
已知椭圆C:
+
=1
的离心率为
,左焦点为F(-1,0),
(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若
,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得S△OPE=S△OPG=S△OEG=
?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的离心率
,长轴的左右端点分别为
,
.
(1)求椭圆
的方程;
(2)设动直线
与曲线
有且只有一个公共点
,且与直线
相交于点
.
求证:以
为直径的圆过定点
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,圆
与直线
相切于点
,与
正半轴交于点
,与直线
在第一象限的交点为
.点
为圆
上任一点,且满足
,动点
的轨迹记为曲线
.![]()
(1)求圆
的方程及曲线
的方程;
(2)若两条直线
和
分别交曲线
于点
、
和
、
,求四边形
面积的最大值,并求此时的
的值.
(3)证明:曲线
为椭圆,并求椭圆
的焦点坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
的内切圆与三边
的切点分别为
,已知
,内切圆圆心
,设点A的轨迹为R. ![]()
(1)求R的方程;
(2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点Q(Q不与C重合),使
恒成立,若求出Q点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知焦点在
轴上的椭圆
经过点
,直线![]()
交椭圆于
不同的两点.![]()
(1)求该椭圆的标准方程;
(2)求实数
的取值范围;
(3)是否存在实数
,使△
是以
为直角的直角三角形,若存在,求出
的值,若不存,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,已知
,
,
是椭圆
上不同的三点,
,
,
在第三象限,线段
的中点在直线
上.![]()
(1)求椭圆的标准方程;
(2)求点C的坐标;
(3)设动点
在椭圆上(异于点
,
,
)且直线PB,PC分别交直线OA于
,
两点,证明
为定值并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线段C上任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=
,|AN|=3,且|NB|=6,建立适当的坐标系,求曲线段C的方程.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com