已知椭圆C:
+
=1
的离心率为
,左焦点为F(-1,0),
(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若
,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得S△OPE=S△OPG=S△OEG=
?
(1)
和
; (2) 椭圆
上不存在满足条件的三点![]()
解析试题分析:(1) 由已知
可解得
,即椭圆方程为
。可得
。根据点斜式可得直线
即直线
方程为
,将直线方程和椭圆方程联立消去
整理为关于
的一元二次方程,可得根与系数的关系。再根据
可求得
的值,即可得所求直线方程。 (2)根据两点确定一条直线可设
两点确定的直线为 l,注意讨论直线的斜率存在与否,用弦长公式可得
的长,用点到线的距离公式可得点
到线
的距离,从而可得三角形面积。同理可得另两个三角形面积,联立方程可得三点横纵坐标的平方,根据三点坐标判断能否与点
构成三角形,若能说明存在满足要求的三点否则说明不存在。
试题解析:(1)由题意:椭圆的方程为
.
设点
,由
得直线
的方程为
.
由方程组
消去
,整理得
,
可得
,
.
因为
,
所以![]()
![]()
![]()
![]()
由已知得
,解得
.
故所求直线
的方程为:
和![]()
(2) 假设存在
满足
.
不妨设
两点确定的直线为 l,
(ⅰ)当直线l的斜率不存在时,
两点关于
轴对称,
所以
,
因为
在椭圆上,
所以
.①
又因为
,
所以|
,②
由①、②得
,
此时
,
.
(ⅱ)当直线l的斜率存在时,设直线l的方程为
,
由题意知
,将其代入
得
,
其中
,
即
,(★)
又
,
所以
.
因为点
到直线l的距离为
,
所以
.
又
,
整理得
,且符合(★)式.
此时![]()
,
.
综上所述,
,结论成立.
同理可得:
,
解得
;![]()
科目:高中数学 来源: 题型:解答题
设椭圆C1:
=1(a>b>0)的左、右焦点分别为为
,
恰是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)平面上的点N满足
,直线l∥MN,且与C1交于A,B两点,若
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系xOy中,椭圆
的离心率为
,过椭圆右焦点
作两条互相垂直的弦
与
.当直线
斜率为0时,
.![]()
(1)求椭圆的方程;
(2)求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(a>b>0)的离心率为
,且椭圆C上一点与两个焦点F1,F2构成的三角形的周长为2
+2.
(1)求椭圆C的方程;
(2)过右焦点F2作直线l 与椭圆C交于A,B两点,设
,若
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知平面内一动点
到两个定点
、
的距离之和为
,线段
的长为![]()
.![]()
(1)求动点
的轨迹
;
(2)当
时,过点
作直线
与轨迹
交于
、
两点,且点
在线段
的上方,线段
的垂直平分线为![]()
①求
的面积的最大值;
②轨迹
上是否存在除
、
外的两点
、
关于直线
对称,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
(
)的右焦点为
,且椭圆
过点
.
(1)求椭圆
的方程;
(2)设斜率为
的直线
与椭圆
交于不同两点
、
,以线段
为底边作等腰三角形
,其中顶点
的坐标为
,求△
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(理)已知点
是平面直角坐标系上的一个动点,点
到直线
的距离等于点
到点
的距离的2倍.记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)斜率为
的直线
与曲线
交于
两个不同点,若直线
不过点
,设直线
的斜率分别为
,求
的数值;
(3)试问:是否存在一个定圆
,与以动点
为圆心,以
为半径的圆相内切?若存在,求出这个定圆的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线
上的任意一点
到该抛物线焦点的距离比该点到
轴的距离多1.![]()
(1)求
的值;
(2)如图所示,过定点
(2,0)且互相垂直的两条直线
、
分别与该抛物线分别交于
、
、
、
四点.
(i)求四边形
面积的最小值;
(ii)设线段
、
的中点分别为
、
两点,试问:直线
是否过定点?若是,求出定点坐标;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com