精英家教网 > 高中数学 > 题目详情

设椭圆C1=1(a>b>0)的左、右焦点分别为为恰是抛物线C2的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.

(1);(2)

解析试题分析:(1)由抛物线的性质知其焦点为,这是椭圆的右焦点,因此有,点是抛物线上的点,而,可由抛物线的定义或抛物线焦半径公式得点的横坐标为,这样点的纵坐标也能求得,而点又是椭圆上的点,可代入椭圆方程得到关于的一个方程,由此可求得,得方程;(2)由向量的坐标运算,根据,可得的坐标,于是直线的斜率可得,也即直线的斜率可得,于是可设直线的方程为已求得),下面就采取处理直线与圆锥曲线相交问题的一般方法,设,由可得,而我们把直线方程代入椭圆方程,得到关于的二次方程,由此可得,代入可求得
(1) 设点M(x,y) (y>0) 由抛物线定义得|MF2|=1+x=,∴x=
又点M(x,y) 在抛物上所以y2=4, 
,由椭圆定义
所以椭圆的方程是                        4分
(2)




     12分
考点:(1)椭圆的标准方程;(2)直线与椭圆相交的综合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=,一条准线的方程是x=2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:=+2,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
问:是否存在定点F,使得|PF|与点P到直线l:x=2的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线="1" 的两个焦点为,P是双曲线上的一点,
且满足 
(1)求的值;
(2)抛物线的焦点F与该双曲线的右顶点重合,斜率为1的直线经过点F与该抛物线交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=,斜率为2的直线l过点A(2,3).

(1)求椭圆E的方程;
(2)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为椭圆的左右焦点,点为其上一点,且有
.
(1)求椭圆的标准方程;
(2)过的直线与椭圆交于两点,过平行的直线与椭圆交于两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,短轴端点分别为.
(1)求椭圆的标准方程;
(2)若,是椭圆上关于轴对称的两个不同点,直线轴交于点,判断以线段为直径的圆是否过点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆,过点且离心率为.

(1)求椭圆的方程;
(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1的离心率为,左焦点为F(-1,0),
(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得SOPE=SOPG=SOEG

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•浙江)如图,点P(0,﹣1)是椭圆C1+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.

查看答案和解析>>

同步练习册答案