(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=,一条准线的方程是x=2
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:=+2,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣,
问:是否存在定点F,使得|PF|与点P到直线l:x=2的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.
(Ⅰ)+=1(Ⅱ)见解析
解析试题分析:(Ⅰ) 由题意得 =,==2,解出a、b 的值,即得椭圆的标准方程.
(Ⅱ)设动点P(x,y),M(x1,y1)、N(x2,y2). 由向量间的关系得到 x=x1+2x2,y=y1+2y2,据
M、N是椭圆上的点可得 x2+2y2=20+4(x1x2+2y1y2).再根据直线OM与ON的斜率之积为﹣,得到点P是椭圆
x2+2y2="20" 上的点,根据椭圆的第二定义,存在点F(,0),满足条件.
解:(Ⅰ) 由题意得 =,==2,∴a=2,b=,
故椭圆的标准方程为 +=1.
(Ⅱ)设动点P(x,y),M(x1,y1)、N(x2,y2).∵动点P满足:=+2,
∴(x,y)=(x1+2x2,y1+2y2 ),∴x=x1+2x2,y=y1+2y2,
∵M、N是椭圆上的点,∴x12+2y12﹣4=0,x22+2y22﹣4=0.
∴x2+2y2=(x1+2x2)2+2 (y1+2y2)2=(x12+2y12)+4(x22+2y22)+4(x1x2+2y1y2)
=4+4×4+4(x1x2+2y1y2)=20+4(x1x2+2y1y2).
∵直线OM与ON的斜率之积为﹣,∴•=﹣,∴x2+2y2=20,
故点P是椭圆 ="1" 上的点,焦点F(,0),准线l:x=2,离心率为,
根据椭圆的第二定义,|PF|与点P到直线l:x=2的距离之比为定值,
故存在点F(,0),满足|PF|与点P到直线l:x=2的距离之比为定值.
点评:本题考查用待定系数法求椭圆的标准方程,两个向量坐标形式的运算,以及椭圆的第二定义,属于中档题.
科目:高中数学 来源: 题型:解答题
已知线段,的中点为,动点满足(为正常数).
(1)建立适当的直角坐标系,求动点所在的曲线方程;
(2)若,动点满足,且,试求面积的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)F1是椭圆的左焦点,C是椭圆上的任一点,证明:;
(3)过且与AB垂直的直线交椭圆于P、Q,若的面积是20 ,求此时椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(2011•福建)如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.
(Ⅰ)求实数b的值;
(Ⅱ)求以点A为圆心,且与抛物线C的准线相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆的圆心在坐标原点,且恰好与直线相切,设点A为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点、(,都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知直线: 和椭圆,椭圆C的离心率为,连结椭圆的四个顶点形成四边形的面积为.
(1)求椭圆C的方程;
(2)若直线与椭圆C有两个不同的交点,求实数m的取值范围;
(3)当时,设直线与y轴的交点为P,M为椭圆C上的动点,求线段PM长度的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C1:=1(a>b>0)的左、右焦点分别为为,恰是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且|MF2|=.
(1)求C1的方程;
(2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com