已知线段
,
的中点为
,动点
满足
(
为正常数).
(1)建立适当的直角坐标系,求动点
所在的曲线方程;
(2)若
,动点
满足
,且
,试求
面积的最大值和最小值.
(1)
;(2)
的最小值为
,最大值为1.
解析试题分析:(1)先以
为圆心,
所在直线为轴建立平面直角坐标系,以
与
的大小关系进行分类讨论,从而即可得到动点
所在的曲线;
(2)当
时,其曲线方程为椭圆
,设
,
,
的斜率为![]()
,则
的方程为
,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式),求得△AOB面积,最后求出面积的最大值即可,从而解决问题.
(1)以
为圆心,
所在直线为轴建立平面直角坐标系.若
,即
,动点
所在的曲线不存在;若
,即
,动点
所在的曲线方程为
;若
,即
,动点
所在的曲线方程为
.……4分
(2)当
时,其曲线方程为椭圆
.由条件知
两点均在椭圆
上,且![]()
设
,
,
的斜率为![]()
,则
的方程为
,
的方程为
解方程组
,得
,![]()
同理可求得
,
面积
=![]()
令
则![]()
令
所以
,即![]()
当
时,可求得
,故
,
故
的最小值为
,最大值为1.
考点:直线与圆锥曲线的综合问题.
科目:高中数学 来源: 题型:解答题
已知圆G:
经过椭圆
的右焦点F及上顶点B,过椭圆外一点(m,0)(
)倾斜角为
的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(
,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+
与双曲线C恒有两个不同的交点A和B,且
·
>2(其中O为原点),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分14分)如图在平面直角坐标系
中,
分别是椭圆
的左右焦点,顶点
的坐标是
,连接
并延长交椭圆于点
,过点
作
轴的垂线交椭圆于另一点
,连接
.![]()
(1)若点
的坐标为
,且
,求椭圆的方程;
(2)若
,求椭圆离心率
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
(
)的左焦点为
,离心率为
.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线
上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设椭圆
的左、右焦点分别为
,点
在椭圆上,
,
,
的面积为
.
(1)求该椭圆的标准方程;
(2)设圆心在
轴上的圆与椭圆在
轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=
,一条准线的方程是x=2![]()
![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:
=
+2
,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
,
问:是否存在定点F,使得|PF|与点P到直线l:x=2
的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com