精英家教网 > 高中数学 > 题目详情

已知线段的中点为,动点满足为正常数).
(1)建立适当的直角坐标系,求动点所在的曲线方程;
(2)若,动点满足,且,试求面积的最大值和最小值.

(1);(2)的最小值为,最大值为1.

解析试题分析:(1)先以为圆心,所在直线为轴建立平面直角坐标系,以的大小关系进行分类讨论,从而即可得到动点所在的曲线;
(2)当时,其曲线方程为椭圆,设的斜率为,则的方程为,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式),求得△AOB面积,最后求出面积的最大值即可,从而解决问题.
(1)以为圆心,所在直线为轴建立平面直角坐标系.若,即,动点所在的曲线不存在;若,即,动点所在的曲线方程为;若,即,动点所在的曲线方程为.……4分
(2)当时,其曲线方程为椭圆.由条件知两点均在椭圆上,且
的斜率为,则的方程为的方程为解方程组,得
同理可求得   
面积=


所以,即
时,可求得,故
的最小值为,最大值为1.
考点:直线与圆锥曲线的综合问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设椭圆的左右焦点为,上顶点为,点关于对称,且
(1)求椭圆的离心率;
(2)已知是过三点的圆上的点,若的面积为,求点到直线距离的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率为.斜率为的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分14分)如图在平面直角坐标系中,分别是椭圆的左右焦点,顶点的坐标是,连接并延长交椭圆于点,过点轴的垂线交椭圆于另一点,连接.

(1)若点的坐标为,且,求椭圆的方程;
(2)若,求椭圆离心率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:)的左焦点为,离心率为.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设椭圆的左、右焦点分别为,点在椭圆上,的面积为.
(1)求该椭圆的标准方程;
(2)设圆心在轴上的圆与椭圆在轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=,一条准线的方程是x=2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:=+2,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
问:是否存在定点F,使得|PF|与点P到直线l:x=2的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案