已知椭圆C:
(
)的左焦点为
,离心率为
.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线
上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.
(1)
;(2)![]()
解析试题分析:(1)由已知得:
,
,所以
,再由
可得
,从而得椭圆的标准方程. )椭圆方程化为
.设PQ的方程为
,代入椭圆方程得:
.面积
,而
,所以只要求出
的值即可得面积.因为四边形OPTQ是平行四边形,所以
,即
.
再结合韦达定理即可得
的值.
试题解析:(1)由已知得:
,
,所以![]()
又由
,解得
,所以椭圆的标准方程为:
.
(2)椭圆方程化为
.
设T点的坐标为
,则直线TF的斜率
.
当
时,直线PQ的斜率
,直线PQ的方程是![]()
当
时,直线PQ的方程是
,也符合
的形式.
将
代入椭圆方程得:
.
其判别式
.
设
,
则
.
因为四边形OPTQ是平行四边形,所以
,即
.
所以
,解得
.
此时四边形OPTQ的面积
.
【考点定位】1、直线及椭圆的方程;2、直线与圆锥曲线的位置关系;3、三角形的面积.
科目:高中数学 来源: 题型:解答题
已知抛物线C:
的焦点为F,
ABQ的三个顶点都在抛物线C上,点M为AB的中点,
.(1)若M
,求抛物线C方程;(2)若
的常数,试求线段
长的最大值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设A,B分别为椭圆
+
=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距.
(1)求椭圆的方程;
(2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知线段
,
的中点为
,动点
满足
(
为正常数).
(1)建立适当的直角坐标系,求动点
所在的曲线方程;
(2)若
,动点
满足
,且
,试求
面积的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知曲线
上的点到点
的距离比它到直线
的距离小2.
(1)求曲线
的方程;
(2)曲线
在点
处的切线
与
轴交于点
.直线
分别与直线
及
轴交于点
,以
为直径作圆
,过点
作圆
的切线,切点为
,试探究:当点
在曲线
上运动(点
与原点不重合)时,线段
的长度是否发生变化?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
为坐标原点,椭圆![]()
的左右焦点分别为
,离心率为
;双曲线![]()
的左右焦点分别为
,离心率为
,已知
,且
.
(1)求
的方程;
(2)过
点作
的不垂直于
轴的弦
,
为
的中点,当直线
与
交于
两点时,求四边形
面积的最小值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点
是椭圆
上任一点,点
到直线
的距离为
,到点
的距离为
,且
.直线
与椭圆
交于不同两点
、
(
,
都在
轴上方),且
.
(1)求椭圆
的方程;
(2)当
为椭圆与
轴正半轴的交点时,求直线
方程;
(3)对于动直线
,是否存在一个定点,无论
如何变化,直线
总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com