已知椭圆C:()的左焦点为,离心率为.
(1)求椭圆C的标准方程;
(2)设O为坐标原点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.
(1) ;(2)
解析试题分析:(1)由已知得:,,所以,再由可得,从而得椭圆的标准方程. )椭圆方程化为.设PQ的方程为,代入椭圆方程得:.面积,而,所以只要求出的值即可得面积.因为四边形OPTQ是平行四边形,所以,即.
再结合韦达定理即可得的值.
试题解析:(1)由已知得:,,所以
又由,解得,所以椭圆的标准方程为:.
(2)椭圆方程化为.
设T点的坐标为,则直线TF的斜率.
当时,直线PQ的斜率,直线PQ的方程是
当时,直线PQ的方程是,也符合的形式.
将代入椭圆方程得:.
其判别式.
设,
则.
因为四边形OPTQ是平行四边形,所以,即.
所以,解得.
此时四边形OPTQ的面积
.
【考点定位】1、直线及椭圆的方程;2、直线与圆锥曲线的位置关系;3、三角形的面积.
科目:高中数学 来源: 题型:解答题
已知抛物线C: 的焦点为F,ABQ的三个顶点都在抛物线C上,点M为AB的中点,.(1)若M,求抛物线C方程;(2)若的常数,试求线段长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设A,B分别为椭圆+=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距.
(1)求椭圆的方程;
(2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知线段,的中点为,动点满足(为正常数).
(1)建立适当的直角坐标系,求动点所在的曲线方程;
(2)若,动点满足,且,试求面积的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知曲线上的点到点的距离比它到直线的距离小2.
(1)求曲线的方程;
(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.
(1)求的方程;
(2)过点作的不垂直于轴的弦,为的中点,当直线与交于两点时,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点、(,都在轴上方),且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com