(满分14分)如图在平面直角坐标系
中,
分别是椭圆
的左右焦点,顶点
的坐标是
,连接
并延长交椭圆于点
,过点
作
轴的垂线交椭圆于另一点
,连接
.![]()
(1)若点
的坐标为
,且
,求椭圆的方程;
(2)若
,求椭圆离心率
的值.
科目:高中数学 来源: 题型:解答题
已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.
(1)求动点C的轨迹E的方程;
(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
给定椭圆
,称圆心在坐标原点O,半径为
的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是
.
(1)若椭圆C上一动点
满足
,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点
作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为
,求P点的坐标;
(3)已知
,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点
的直线的最短距离
.若存在,求出a,b的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知线段
,
的中点为
,动点
满足
(
为正常数).
(1)建立适当的直角坐标系,求动点
所在的曲线方程;
(2)若
,动点
满足
,且
,试求
面积的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
在平面直角坐标系
中,椭圆
的离心率为
,直线
被椭圆
截得的线段长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过原点的直线与椭圆
交于
两点(
不是椭圆
的顶点).点
在椭圆
上,且
,直线
与
轴、
轴分别交于
两点.
(i)设直线
的斜率分别为
,证明存在常数
使得
,并求出
的值;
(ii)求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设有双曲线
,F1,F2是其两个焦点,点M在双曲线上.
(1)若∠F1MF2=90°,求△F1MF2的面积;
(2)若∠F1MF2=60°,△F1MF2的面积是多少?若∠F1MF2=120°,△F1MF2的面积又是多少?
(3)观察以上计算结果,你能看出随∠F1MF2的变化,△F1MF2的面积将怎样变化吗?试证明你的结论.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆
的圆心在坐标原点
,且恰好与直线
相切,设点A为圆上一动点,
轴于点
,且动点
满足
,设动点
的轨迹为曲线![]()
(1)求曲线C的方程,
(2)直线l与直线l,垂直且与曲线C交于B、D两点,求△OBD面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com