已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.
(1)求动点C的轨迹E的方程;
(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.
科目:高中数学 来源: 题型:解答题
平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于,若点P的轨迹为曲线E,过点 直线 交曲线E于M,N两点.
(Ⅰ)求曲线E的方程,并证明:MAN是一定值;
(Ⅱ)若四边形AMBN的面积为S,求S的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。
(1)求椭圆的方程;
(2)斜率的直线与椭圆相交于不同的两点M,N满足,求直线l的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0).
(1)求双曲线C的方程;
(2)若直线l:y=kx+与双曲线C恒有两个不同的交点A和B,且·>2(其中O为原点),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分14分)如图在平面直角坐标系中,分别是椭圆的左右焦点,顶点的坐标是,连接并延长交椭圆于点,过点作轴的垂线交椭圆于另一点,连接.
(1)若点的坐标为,且,求椭圆的方程;
(2)若,求椭圆离心率的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的焦点到准线的距离为.过点
作直线交抛物线与两点(在第一象限内).
(1)若与焦点重合,且.求直线的方程;
(2)设关于轴的对称点为.直线交轴于. 且.求点到直线的距离的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com