精英家教网 > 高中数学 > 题目详情

已知抛物线.命题p: 直线l1:与抛物线C有公共点.命题q: 直线l2:被抛物线C所截得的线段长大于2.若为假, 为真,求k的取值范围.

解析试题分析:先求出p为真, ;q为真,得
为假, 为真可得:p,q一真一假.若p真q假, 则;若q真p假, 则
综上可得结论.
若p为真,联立C和l1的方程化简得
时,方程显然有解;时,由. 综上        (4分)
若q为真, 联立C和l2的方程化简得,
时显然不成立;∴,
由于l2是抛物线的焦点弦, 故,解得.(8分)
为真, 为假,∴p,q一真一假.
若p真q假, 则; 若q真p假, 则
综上.               (12分)
考点:复合命题真假的判断;根与系数的关系;焦点弦问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,分别为椭圆的左、右两个焦点,为两个顶点,已知顶点两点的距离之和为.
(1)求椭圆的方程;
(2)求椭圆上任意一点到右焦点的距离的最小值;
(3)作的平行线交椭圆两点,求弦长的最大值,并求取最大值时的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在平面直角坐标系中,设椭圆,其中,过椭圆内一点的两条直线分别与椭圆交于点,且满足,其中为正常数. 当点恰为椭圆的右顶点时,对应的.
(1)求椭圆的离心率;
(2)求的值;
(3)当变化时,是否为定值?若是,请求出此定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆经过点,且两焦点与短轴的两个端点的连线构成一正方形.(12分)
(1)求椭圆的方程;
(2)直线与椭圆交于两点,若线段的垂直平分线经过点,求
为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.
(1)求动点C的轨迹E的方程;
(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-).
(1)求双曲线方程;
(2)若点M(3,m)在双曲线上,求证:·=0;
(3)求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是.
(1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程;
(2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标;
(3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
在平面直角坐标系中,椭圆的离心率为,直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)过原点的直线与椭圆交于两点(不是椭圆的顶点).点在椭圆上,且,直线轴、轴分别交于两点.
(i)设直线的斜率分别为,证明存在常数使得,并求出的值;
(ii)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的焦点在x轴上,左右顶点分别为,上顶点为B,抛物线分别以A,B为焦点,其顶点均为坐标原点O,相交于 直线上一点P.
(1)求椭圆C及抛物线的方程;
(2)若动直线与直线OP垂直,且与椭圆C交于不同的两点M,N,已知点,求的最小值。

查看答案和解析>>

同步练习册答案