如图所示,
、
分别为椭圆
:![]()
的左、右两个焦点,
、
为两个顶点,已知顶点
到
、
两点的距离之和为
.
(1)求椭圆
的方程;
(2)求椭圆
上任意一点
到右焦点
的距离的最小值;
(3)作
的平行线交椭圆
于
、
两点,求弦长
的最大值,并求
取最大值时
的面积.![]()
(1)
;(2)
;(3)
,
.
解析试题分析:(1)求椭圆方程需遵循定型、定位、定量,这里结合椭圆定义不难求得方程;(2)首先写出
表达式然后将关于
的二元问题转化为关于
的一元问题,归结为函数求最值,注意
的隐含条件;(3)求直线被曲线截得的弦长是解析几何中的常见问题,求出弦长的表达式然后求最值,一般要关注判别式,否则易犯错.
试题解析:(1)由已知得
,∴椭圆
的方程为
2分
(2) ∵
,
且
,
∴
4分
∴仅当
为右顶点时
5分
(3)设
,
∵
,∴可设直线
的方程为:
,代入
,得
7分
由韦达定理知:
,
, 9分
又
,![]()
∴![]()
![]()
仅当
时,
12分
而此时点
到直线
:
的距离
,
∴
. 13分
考点:1.椭圆方程与性质的互求;2.直线与椭圆的常规问题.
科目:高中数学 来源: 题型:解答题
平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于
,若点P的轨迹为曲线E,过点
直线
交曲线E于M,N两点.
(Ⅰ)求曲线E的方程,并证明:
MAN是一定值;
(Ⅱ)若四边形AMBN的面积为S,求S的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的对称中心为原点
,焦点在
轴上,左右焦点分别为和,且||=2,离心率
.
(1)求椭圆
的方程;
(2)过的直线与椭圆
相交于A,B两点,若
的面积为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直线y=kx+b与曲线
交于A、B两点,记△AOB的面积为S(O是坐标原点).
(1)求曲线的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(3)当|AB|=2,S=1时,求直线AB的方程.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com