设椭圆C∶
+
=1(a>b>0)过点(0,4),离心率为
.
(1)求C的方程;
(2)求过点(3,0)且斜率为
的直线被C所截线段的中点坐标.
(1)
+
=1;(2) (
,-
).
解析试题分析:(1)由已知可得b=4,再由在椭圆中有:
及离心率
,可求得a的值,从而就可写出椭圆C的方程;(2)由已知可写出过点(3,0)且斜率为
的直线方程,将此直线方程代入椭圆C的方程中,解此方程就可求得直线被C所截线段的两个端点的横坐标,从而求得线段中点的横坐标,再代入直线方程就可得到线段中点的纵坐标,若方程不好解,注意韦达定理可直接求得所求线段中点的横坐标,进而可得线段中点的坐标.
试题解析:(1)将(0,4)代入C的方程得
=1,∴b=4,
由e=
=
得
=
,即1-
=
,∴a=5,∴C的方程为
+
=1.
(2)过点(3,0)且斜率为
的直线方程为 y =
(x-3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y=
(x-3)代入C的方程,得
+
=1,即x2-3x-8=0,解得
x1=
,x2=
,
∴AB的中点坐标
=
=
,
=
=
(x1+x2-6)=-
,
即中点坐标为(
,-
).
考点:1.椭圆方程;2.直线与椭圆的位置关系.
科目:高中数学 来源: 题型:解答题
平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于
,若点P的轨迹为曲线E,过点
直线
交曲线E于M,N两点.
(Ⅰ)求曲线E的方程,并证明:
MAN是一定值;
(Ⅱ)若四边形AMBN的面积为S,求S的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的对称中心为原点
,焦点在
轴上,左右焦点分别为和,且||=2,离心率
.
(1)求椭圆
的方程;
(2)过的直线与椭圆
相交于A,B两点,若
的面积为
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆G:
经过椭圆
的右焦点F及上顶点B,过椭圆外一点(m,0)(
)倾斜角为
的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直线y=kx+b与曲线
交于A、B两点,记△AOB的面积为S(O是坐标原点).
(1)求曲线的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(3)当|AB|=2,S=1时,求直线AB的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆的对称中心在坐标原点,一个顶点为
,右焦点F与点
的距离为2。
(1)求椭圆的方程;
(2)斜率
的直线
与椭圆相交于不同的两点M,N满足
,求直线l的方程。![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分14分)如图在平面直角坐标系
中,
分别是椭圆
的左右焦点,顶点
的坐标是
,连接
并延长交椭圆于点
,过点
作
轴的垂线交椭圆于另一点
,连接
.![]()
(1)若点
的坐标为
,且
,求椭圆的方程;
(2)若
,求椭圆离心率
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com