精英家教网 > 高中数学 > 题目详情

设椭圆C∶=1(a>b>0)过点(0,4),离心率为.
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.

(1)=1;(2) (,-).

解析试题分析:(1)由已知可得b=4,再由在椭圆中有:及离心率,可求得a的值,从而就可写出椭圆C的方程;(2)由已知可写出过点(3,0)且斜率为的直线方程,将此直线方程代入椭圆C的方程中,解此方程就可求得直线被C所截线段的两个端点的横坐标,从而求得线段中点的横坐标,再代入直线方程就可得到线段中点的纵坐标,若方程不好解,注意韦达定理可直接求得所求线段中点的横坐标,进而可得线段中点的坐标.
试题解析:(1)将(0,4)代入C的方程得=1,∴b=4,
由e=,即1-,∴a=5,∴C的方程为=1.
(2)过点(3,0)且斜率为的直线方程为 y =(x-3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y= (x-3)代入C的方程,得=1,即x2-3x-8=0,解得
x1,x2
∴AB的中点坐标
(x1+x2-6)=-
即中点坐标为(,-).
考点:1.椭圆方程;2.直线与椭圆的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于,若点P的轨迹为曲线E,过点 直线 交曲线E于M,N两点.
(Ⅰ)求曲线E的方程,并证明:MAN是一定值;
(Ⅱ)若四边形AMBN的面积为S,求S的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且||=2,离心率.
(1)求椭圆的方程;
(2)过的直线与椭圆相交于A,B两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点).
(1)求曲线的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(3)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两个焦点坐标分别是,并且经过点,求它的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。
(1)求椭圆的方程;
(2)斜率的直线与椭圆相交于不同的两点M,N满足,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分14分)如图在平面直角坐标系中,分别是椭圆的左右焦点,顶点的坐标是,连接并延长交椭圆于点,过点轴的垂线交椭圆于另一点,连接.

(1)若点的坐标为,且,求椭圆的方程;
(2)若,求椭圆离心率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知是椭圆()的半焦距,则的取值范围是___________

查看答案和解析>>

同步练习册答案