(2013•浙江)如图,点P(0,﹣1)是椭圆C1:
+
=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.
(1)求椭圆C1的方程;
(2)求△ABD面积的最大值时直线l1的方程.![]()
科目:高中数学 来源: 题型:解答题
如图,椭圆
上的点M与椭圆右焦点
的连线
与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)F1是椭圆的左焦点,C是椭圆上的任一点,证明:
;
(3)过
且与AB垂直的直线交椭圆于P、Q,若
的面积是20
,求此时椭圆的方程.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知直线
:
和椭圆
,椭圆C的离心率为
,连结椭圆的四个顶点形成四边形的面积为
.
(1)求椭圆C的方程;
(2)若直线
与椭圆C有两个不同的交点,求实数m的取值范围;
(3)当
时,设直线
与y轴的交点为P,M为椭圆C上的动点,求线段PM长度的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
(
)过点
,且椭圆
的离心率为
.
(1)求椭圆
的方程;
(2)若动点
在直线
上,过
作直线交椭圆
于
两点,且
为线段
中点,再过
作直线
.求直线
是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C1:
=1(a>b>0)的左、右焦点分别为为
,
恰是抛物线C2:
的焦点,点M为C1与C2在第一象限的交点,且|MF2|=
.
(1)求C1的方程;
(2)平面上的点N满足
,直线l∥MN,且与C1交于A,B两点,若
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上,椭圆上的点到焦点的最小距离为
,离心率
.
(1)求椭圆
的方程;
(2)若直线
交
于
、
两点,点
,问是否存在
,使
?若存在求出
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,设P是圆
上的动点,点D是P在
轴上投影,M为PD上一点,且
.![]()
(1)当P在圆上运动时,求点M的轨迹C的方程;
(2)求过点(3,0)且斜率为
的直线被C所截线段的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com